organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2970-o2971

3-(2H-1,3-Benzodioxol-5-ylmeth­yl)-2-(2-meth­­oxy­phen­yl)-1,3-thia­zolidin-4-one

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–Farmanguinhos, R. Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartamento de Química Orgânica, Universidade Federal de Pelotas (UFPel), Campus Universitário, s/n, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 October 2011; accepted 7 October 2011; online 22 October 2011)

The title mol­ecule, C18H17NO4S, features a 1,3-thia­zolidine ring that is twisted about the S—C(methyl­ene) bond. With reference to this ring, the 1,3-benzodioxole and benzene rings lie to either side and form dihedral angles of 69.72 (16) and 83.60 (14)°, respectively, with the central ring. Significant twisting in the mol­ecule is confirmed by the dihedral angle of 79.91 (13)° formed between the outer rings. Linear supra­molecular chains along the a-axis direction mediated by C—H⋯O inter­actions feature in the crystal packing.

Related literature

For background to the biological activity of thia­zolidinones, see: Cunico et al. (2008a[Cunico, W., Gomes, C. R. B. & Vellasco, W. T. Jr (2008a). Mini-Rev. Org. Chem. 5, 336-344.]); Solomon et al. (2007[Solomon, V. R., Haq, W., Srivastava, K., Puri, S. K. & Katti, S. B. (2007). J. Med. Chem. 50, 394-398.]); Kavitha et al. (2006[Kavitha, C. V., Nanjunda Swamy, B. S., Mantelingu, K., Doreswamy, S., Sridhar, M. A., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. 14, 2290.]); Sharma et al. (2006[Sharma, S., Singh, T., Mittal, R., Saxena, K. K., Srivastava, V. K. & Kumar, A. (2006). Arch. Pharm. Chem. Life Sci. 339, 145-152.]); Ravichandran et al. (2009[Ravichandran, V., Prashantha Kumar, B. R., Sankar, S. & Agrawal, R. K. (2009). Eur. J. Med. Chem. 44, 1180-1187.]); Rao et al. (2004[Rao, A., Chimirri, A., Ferro, S., Monforte, A. M., Monforte, P. & Maria Zappalà, M. (2004). Arkivoc, pp. 147-155]). For background to the synthesis, see: Cunico et al. (2008b[Cunico, W., Vellasco, W. T. Jr, Moreth, M. & Gomes, C. R. B. (2008b). Lett. Org. Chem. 5, 349-352.]); Rawal et al. (2008[Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 2800-2806.]), Gomes et al. (2010[Gomes, C. R. B., Moreth, M., Facchinetti, V., de Souza, M. V. N., Vellasco Junior, W. T., Lourenço, M. C. S. & Cunico, W. (2010). Lett. Drug Des. Discov. 7, 353-358.]), Neuenfeldt et al. (2011[Neuenfeldt, P. D., Duval, A. R., Drawanz, B. B., Rosales, P. F., Gomes, C. R. B., Pereira, C. M. P. & Cunico, W. (2011). Ultrason. Sonochem. 18, 65-67.]). For related studies on the synthesis and biological evaluation of thia­zolidinones, see: Cunico et al. (2006[Cunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405-3408.], 2007[Cunico, W., Gomes, C. R. B., Ferreira, M. L. G., Capri, L. R., Soares, M. & Wardell, S. M. S. V. (2007). Tetrahedron Lett. 48, 6217-6220.]). For a thia­zolidinone structure, see: Neuenfeldt et al. (2009[Neuenfeldt, P. D., Drawanz, B. B., Cunico, W., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3190-o3191.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17NO4S

  • Mr = 343.39

  • Monoclinic, P 21 /n

  • a = 6.8137 (3) Å

  • b = 12.5753 (7) Å

  • c = 18.5071 (9) Å

  • β = 91.825 (3)°

  • V = 1584.96 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 120 K

  • 0.16 × 0.06 × 0.05 mm

Data collection
  • Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.553, Tmax = 0.746

  • 21683 measured reflections

  • 3625 independent reflections

  • 1935 reflections with I > 2σ(I)

  • Rint = 0.159

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.180

  • S = 1.02

  • 3625 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.36 3.302 (4) 170
C13—H13⋯O1ii 0.95 2.43 3.352 (4) 163
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiazolidinones constitute an important group of heterocyclic compounds (Cunico et al., 2008a), having valuable biological uses, for example, as anti-malarial (Solomon et al., 2007), anti-microbial (Kavitha et al., 2006), anti-inflammatory (Sharma et al., 2006), and anti-viral agents, especially as anti-HIV agents (Ravichandran et al., 2009; Rao et al., 2004). The main synthetic routes to 1,3-thiazolidin-4-ones involve three components (an aldehyde, an amine and mercaptoacetic acid), either in a one- or two-step process (Cunico et al., 2008a; Rawal et al., 2008), and also under ultrasound irradiation (Neuenfeldt et al., 2011). The structure of 1-thia-4-azaspiro[4.5]decan-3-one has been reported recently (Neuenfeldt et al., 2009). In continuation of our research on thiazolidinones, (Cunico et al., 2006; Cunico et al., 2007; Cunico et al., 2008b; Gomes et al., 2010; Neuenfeldt et al., 2011), we now wish to report the structure of 2-(2-methoxybenzaldehyde)-3-piperonyl-1,3-thiazolidin-4-one, (I), synthesized, as reported from piperonylamine, 2-methoxybenzaldehyde and mercaptoacetic acid under ultrasound irradiation (Neuenfeldt et al., 2011). The sample used in the structure determination was grown from its EtOH solution.

The thiazolidinyl ring in (I), Fig. 1, is twisted about the S1—C3 bond but, the deviations from co-planarity for the five atoms are not great, i.e. the maximum and minimum deviations are 0.109 (1) Å for atom S1 and -0.117 (4) Å for atom C3; the ketone-O1 atom lies 0.244 (2) Å out of the least-squares plane through the five-membered ring. The dioxole ring has an envelope conformation with the C15 atom being the flap atom. The r.m.s. deviation for the 13 non-hydrogen atoms comprising the 1,3-benzodioxole ring is 0.110 Å. With reference to the thiazolidinyl ring, the 1,3-benzodioxole and benzene rings lie to either side and form dihedral angles with this ring of 69.72 (16) and 83.60 (14)°, respectively. The outer rings form a dihedral angle of 79.91 (13)° with each other, indicating that the molecule is highly twisted.

The most prominent feature of the crystal packing is the formation of C—H···O interactions involving the bifurcated carbonyl-O1 atom, Table 1. These lead to linear supramolecular chains along the a axis, Fig. 2.

Related literature top

For background to the biological activity of thiazolidinones, see: Cunico et al. (2008a); Solomon et al. (2007); Kavitha et al. (2006); Sharma et al. (2006); Ravichandran et al. (2009); Rao et al. (2004). For background to the synthesis, see: Cunico et al. (2008b); Rawal et al. (2008), Gomes et al. (2010), Neuenfeldt et al. (2011). For related studies on the synthesis and biological evaluation of thiazolidinones, see: Cunico et al. (2006, 2007). For a thiazolidinone structure, see: Neuenfeldt et al. (2009).

Experimental top

The title compound was synthesized as described in the literature (Neuenfeldt et al., 2011) and crystals were obtained from its EtOH solution.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain propogated down the a axis via C—H···O interactions (orange dashed lines) in the crystal structure of (I).
3-(2H-1,3-Benzodioxol-5-ylmethyl)-2-(2-methoxyphenyl)- 1,3-thiazolidin-4-one top
Crystal data top
C18H17NO4SF(000) = 720
Mr = 343.39Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7149 reflections
a = 6.8137 (3) Åθ = 2.9–27.5°
b = 12.5753 (7) ŵ = 0.23 mm1
c = 18.5071 (9) ÅT = 120 K
β = 91.825 (3)°Block, colourless
V = 1584.96 (14) Å30.16 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
3625 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1935 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.159
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1516
Tmin = 0.553, Tmax = 0.746l = 2324
21683 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0754P)2]
where P = (Fo2 + 2Fc2)/3
3625 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C18H17NO4SV = 1584.96 (14) Å3
Mr = 343.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8137 (3) ŵ = 0.23 mm1
b = 12.5753 (7) ÅT = 120 K
c = 18.5071 (9) Å0.16 × 0.06 × 0.05 mm
β = 91.825 (3)°
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
3625 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1935 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.746Rint = 0.159
21683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
3625 reflectionsΔρmin = 0.43 e Å3
218 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48794 (13)0.72256 (9)0.17227 (5)0.0365 (3)
O10.3856 (3)0.60647 (19)0.01787 (12)0.0321 (6)
O20.9136 (3)0.76552 (19)0.24212 (12)0.0291 (6)
O31.2380 (3)0.9163 (2)0.11437 (14)0.0358 (6)
O41.0102 (3)1.05303 (19)0.11655 (13)0.0328 (6)
N10.6500 (4)0.6556 (2)0.05355 (13)0.0231 (6)
C10.7138 (4)0.6948 (3)0.12420 (17)0.0246 (8)
H10.78490.76350.11740.029*
C20.4558 (5)0.6343 (3)0.04091 (18)0.0260 (8)
C30.3391 (5)0.6492 (3)0.10759 (19)0.0358 (9)
H3A0.30340.57920.12790.043*
H3B0.21670.68880.09570.043*
C40.8488 (4)0.6199 (3)0.16581 (17)0.0239 (8)
C50.9521 (4)0.6609 (3)0.22695 (17)0.0236 (8)
C61.0804 (5)0.5969 (3)0.26668 (18)0.0278 (8)
H61.15250.62530.30700.033*
C71.1036 (5)0.4905 (3)0.24740 (18)0.0300 (9)
H71.19170.44650.27470.036*
C80.9991 (5)0.4487 (3)0.18869 (18)0.0289 (8)
H81.01270.37570.17650.035*
C90.8740 (5)0.5139 (3)0.14744 (17)0.0260 (8)
H90.80530.48560.10630.031*
C100.9967 (5)0.8064 (3)0.30861 (18)0.0321 (9)
H10A0.94990.76420.34910.048*
H10B0.95680.88070.31450.048*
H10C1.14020.80220.30770.048*
C110.7881 (5)0.6555 (3)0.00479 (17)0.0281 (8)
H11A0.73090.61460.04600.034*
H11B0.90990.61880.01190.034*
C120.8399 (5)0.7660 (3)0.03050 (16)0.0254 (8)
C131.0282 (5)0.7820 (3)0.05777 (17)0.0245 (8)
H131.12440.72730.05700.029*
C141.0652 (4)0.8808 (3)0.08553 (18)0.0264 (8)
C151.1839 (5)1.0137 (3)0.1505 (2)0.0372 (9)
H15A1.15621.00040.20260.045*
H15B1.29171.06620.14560.045*
C160.9303 (5)0.9626 (3)0.08612 (18)0.0285 (8)
C170.7480 (5)0.9499 (3)0.05749 (17)0.0280 (8)
H170.65631.00680.05620.034*
C180.7038 (5)0.8489 (3)0.03018 (17)0.0260 (8)
H180.57810.83660.01100.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (5)0.0496 (7)0.0329 (5)0.0028 (4)0.0009 (4)0.0113 (5)
O10.0314 (13)0.0343 (16)0.0300 (14)0.0017 (11)0.0083 (11)0.0041 (12)
O20.0332 (13)0.0292 (15)0.0245 (13)0.0021 (11)0.0070 (10)0.0028 (11)
O30.0291 (13)0.0316 (16)0.0472 (16)0.0008 (11)0.0082 (11)0.0041 (12)
O40.0329 (14)0.0290 (15)0.0367 (14)0.0010 (11)0.0049 (11)0.0016 (12)
N10.0231 (14)0.0276 (17)0.0183 (13)0.0027 (12)0.0017 (11)0.0009 (12)
C10.0246 (17)0.026 (2)0.0232 (17)0.0041 (14)0.0026 (14)0.0039 (15)
C20.0269 (17)0.023 (2)0.0279 (19)0.0020 (14)0.0041 (15)0.0032 (16)
C30.0270 (18)0.050 (3)0.0305 (19)0.0054 (17)0.0024 (15)0.0001 (18)
C40.0199 (16)0.030 (2)0.0223 (17)0.0005 (14)0.0019 (13)0.0035 (15)
C50.0213 (16)0.028 (2)0.0218 (17)0.0039 (14)0.0000 (13)0.0007 (15)
C60.0255 (17)0.035 (2)0.0225 (18)0.0062 (16)0.0016 (14)0.0015 (16)
C70.0307 (19)0.029 (2)0.030 (2)0.0074 (16)0.0020 (16)0.0040 (17)
C80.0306 (19)0.027 (2)0.0294 (19)0.0010 (15)0.0006 (15)0.0041 (16)
C90.0280 (18)0.029 (2)0.0207 (17)0.0037 (15)0.0012 (14)0.0010 (15)
C100.037 (2)0.031 (2)0.0284 (19)0.0037 (17)0.0062 (15)0.0091 (17)
C110.0308 (18)0.031 (2)0.0220 (17)0.0019 (16)0.0018 (14)0.0015 (16)
C120.0283 (18)0.031 (2)0.0164 (17)0.0006 (15)0.0049 (14)0.0026 (15)
C130.0251 (17)0.024 (2)0.0239 (17)0.0047 (14)0.0016 (14)0.0000 (15)
C140.0231 (17)0.031 (2)0.0250 (18)0.0010 (15)0.0005 (14)0.0027 (16)
C150.036 (2)0.032 (2)0.044 (2)0.0046 (17)0.0117 (18)0.0017 (18)
C160.0322 (19)0.029 (2)0.0240 (18)0.0043 (16)0.0032 (15)0.0000 (16)
C170.0296 (19)0.030 (2)0.0239 (18)0.0047 (15)0.0020 (15)0.0021 (16)
C180.0225 (16)0.030 (2)0.0256 (17)0.0013 (15)0.0020 (14)0.0000 (16)
Geometric parameters (Å, º) top
S1—C31.799 (4)C7—C81.384 (5)
S1—C11.836 (3)C7—H70.9500
O1—C21.225 (4)C8—C91.393 (5)
O2—C51.372 (4)C8—H80.9500
O2—C101.433 (4)C9—H90.9500
O3—C141.382 (4)C10—H10A0.9800
O3—C151.437 (4)C10—H10B0.9800
O4—C161.388 (4)C10—H10C0.9800
O4—C151.445 (4)C11—C121.514 (5)
N1—C21.363 (4)C11—H11A0.9900
N1—C11.451 (4)C11—H11B0.9900
N1—C111.455 (4)C12—C181.395 (5)
C1—C41.510 (5)C12—C131.408 (5)
C1—H11.0000C13—C141.372 (5)
C2—C31.501 (5)C13—H130.9500
C3—H3A0.9900C14—C161.379 (5)
C3—H3B0.9900C15—H15A0.9900
C4—C91.387 (5)C15—H15B0.9900
C4—C51.411 (4)C16—C171.375 (5)
C5—C61.382 (5)C17—C181.404 (5)
C6—C71.395 (5)C17—H170.9500
C6—H60.9500C18—H180.9500
C3—S1—C192.50 (15)C4—C9—H9119.7
C5—O2—C10116.5 (3)C8—C9—H9119.7
C14—O3—C15104.2 (2)O2—C10—H10A109.5
C16—O4—C15103.5 (3)O2—C10—H10B109.5
C2—N1—C1118.9 (3)H10A—C10—H10B109.5
C2—N1—C11121.3 (3)O2—C10—H10C109.5
C1—N1—C11119.1 (3)H10A—C10—H10C109.5
N1—C1—C4114.1 (3)H10B—C10—H10C109.5
N1—C1—S1105.6 (2)N1—C11—C12113.3 (3)
C4—C1—S1112.2 (2)N1—C11—H11A108.9
N1—C1—H1108.2C12—C11—H11A108.9
C4—C1—H1108.2N1—C11—H11B108.9
S1—C1—H1108.2C12—C11—H11B108.9
O1—C2—N1123.9 (3)H11A—C11—H11B107.7
O1—C2—C3124.3 (3)C18—C12—C13120.5 (3)
N1—C2—C3111.8 (3)C18—C12—C11121.5 (3)
C2—C3—S1108.0 (2)C13—C12—C11117.9 (3)
C2—C3—H3A110.1C14—C13—C12116.4 (3)
S1—C3—H3A110.1C14—C13—H13121.8
C2—C3—H3B110.1C12—C13—H13121.8
S1—C3—H3B110.1C13—C14—C16123.2 (3)
H3A—C3—H3B108.4C13—C14—O3127.3 (3)
C9—C4—C5119.0 (3)C16—C14—O3109.4 (3)
C9—C4—C1123.5 (3)O3—C15—O4106.9 (3)
C5—C4—C1117.5 (3)O3—C15—H15A110.3
O2—C5—C6124.8 (3)O4—C15—H15A110.3
O2—C5—C4114.9 (3)O3—C15—H15B110.3
C6—C5—C4120.3 (3)O4—C15—H15B110.3
C5—C6—C7119.8 (3)H15A—C15—H15B108.6
C5—C6—H6120.1C17—C16—C14121.4 (3)
C7—C6—H6120.1C17—C16—O4128.5 (3)
C8—C7—C6120.4 (3)C14—C16—O4110.1 (3)
C8—C7—H7119.8C16—C17—C18116.8 (3)
C6—C7—H7119.8C16—C17—H17121.6
C7—C8—C9119.8 (3)C18—C17—H17121.6
C7—C8—H8120.1C12—C18—C17121.7 (3)
C9—C8—H8120.1C12—C18—H18119.2
C4—C9—C8120.7 (3)C17—C18—H18119.2
C2—N1—C1—C4115.2 (3)C5—C4—C9—C80.1 (5)
C11—N1—C1—C474.1 (4)C1—C4—C9—C8179.2 (3)
C2—N1—C1—S18.5 (4)C7—C8—C9—C41.8 (5)
C11—N1—C1—S1162.2 (2)C2—N1—C11—C12101.4 (4)
C3—S1—C1—N114.3 (2)C1—N1—C11—C1269.0 (4)
C3—S1—C1—C4110.5 (3)N1—C11—C12—C1833.1 (4)
C1—N1—C2—O1175.9 (3)N1—C11—C12—C13149.5 (3)
C11—N1—C2—O15.4 (5)C18—C12—C13—C142.1 (5)
C1—N1—C2—C34.0 (4)C11—C12—C13—C14175.3 (3)
C11—N1—C2—C3174.5 (3)C12—C13—C14—C161.4 (5)
O1—C2—C3—S1165.0 (3)C12—C13—C14—O3179.1 (3)
N1—C2—C3—S114.9 (4)C15—O3—C14—C13166.6 (3)
C1—S1—C3—C216.7 (3)C15—O3—C14—C1615.4 (4)
N1—C1—C4—C914.6 (4)C14—O3—C15—O423.8 (4)
S1—C1—C4—C9105.4 (3)C16—O4—C15—O323.0 (3)
N1—C1—C4—C5166.0 (3)C13—C14—C16—C170.9 (5)
S1—C1—C4—C573.9 (3)O3—C14—C16—C17177.2 (3)
C10—O2—C5—C67.3 (4)C13—C14—C16—O4179.2 (3)
C10—O2—C5—C4172.6 (3)O3—C14—C16—O41.1 (4)
C9—C4—C5—O2178.2 (3)C15—O4—C16—C17168.2 (3)
C1—C4—C5—O21.2 (4)C15—O4—C16—C1413.7 (4)
C9—C4—C5—C61.7 (4)C14—C16—C17—C182.3 (5)
C1—C4—C5—C6179.0 (3)O4—C16—C17—C18179.8 (3)
O2—C5—C6—C7178.1 (3)C13—C12—C18—C170.8 (5)
C4—C5—C6—C71.8 (5)C11—C12—C18—C17176.6 (3)
C5—C6—C7—C80.0 (5)C16—C17—C18—C121.5 (5)
C6—C7—C8—C91.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.363.302 (4)170
C13—H13···O1ii0.952.433.352 (4)163
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H17NO4S
Mr343.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)6.8137 (3), 12.5753 (7), 18.5071 (9)
β (°) 91.825 (3)
V3)1584.96 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.16 × 0.06 × 0.05
Data collection
DiffractometerBruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.553, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
21683, 3625, 1935
Rint0.159
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.180, 1.02
No. of reflections3625
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.43

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.363.302 (4)170
C13—H13···O1ii0.952.433.352 (4)163
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405–3408.  Web of Science CSD CrossRef Google Scholar
First citationCunico, W., Gomes, C. R. B., Ferreira, M. L. G., Capri, L. R., Soares, M. & Wardell, S. M. S. V. (2007). Tetrahedron Lett. 48, 6217–6220.  Web of Science CSD CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B. & Vellasco, W. T. Jr (2008a). Mini-Rev. Org. Chem. 5, 336–344.  Web of Science CrossRef CAS Google Scholar
First citationCunico, W., Vellasco, W. T. Jr, Moreth, M. & Gomes, C. R. B. (2008b). Lett. Org. Chem. 5, 349–352.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGomes, C. R. B., Moreth, M., Facchinetti, V., de Souza, M. V. N., Vellasco Junior, W. T., Lourenço, M. C. S. & Cunico, W. (2010). Lett. Drug Des. Discov. 7, 353–358.  CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKavitha, C. V., Nanjunda Swamy, B. S., Mantelingu, K., Doreswamy, S., Sridhar, M. A., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. 14, 2290.  Web of Science CSD CrossRef PubMed Google Scholar
First citationNeuenfeldt, P. D., Drawanz, B. B., Cunico, W., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3190–o3191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeuenfeldt, P. D., Duval, A. R., Drawanz, B. B., Rosales, P. F., Gomes, C. R. B., Pereira, C. M. P. & Cunico, W. (2011). Ultrason. Sonochem. 18, 65–67.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRao, A., Chimirri, A., Ferro, S., Monforte, A. M., Monforte, P. & Maria Zappalà, M. (2004). Arkivoc, pp. 147–155  CrossRef Google Scholar
First citationRavichandran, V., Prashantha Kumar, B. R., Sankar, S. & Agrawal, R. K. (2009). Eur. J. Med. Chem. 44, 1180–1187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 2800–2806.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, S., Singh, T., Mittal, R., Saxena, K. K., Srivastava, V. K. & Kumar, A. (2006). Arch. Pharm. Chem. Life Sci. 339, 145–152.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, V. R., Haq, W., Srivastava, K., Puri, S. K. & Katti, S. B. (2007). J. Med. Chem. 50, 394–398.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2970-o2971
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds