organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2934-o2935

[1-(3-Chloro­phen­yl)-1H-1,2,3-triazol-4-yl]methanol hemihydrate

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Sintese Organica, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 October 2011; accepted 10 October 2011; online 12 October 2011)

The asymmetric unit of the title hydrate, C9H8ClN3O·0.5H2O, comprises two independent 1,2,3-triazole mol­ecules and a water mol­ecule of crystallization. The dihedral angles between the six- and five-membered rings in the 1,2,3-triazole mol­ecules are 12.71 (19) and 17.3 (2)°. The most significant different between them is found in the relative orientations of the terminal CH2OH groups with one being close to perpendicular to the five-membered ring [N—C—C—O torsion angle = 82.2 (5)°], while in the other mol­ecule, a notable deviation from a perpendicular disposition is found [torsion angle = −60.3 (5)°]. Supra­molecular chains feature in the crystal packing sustained by O—H⋯(O,N) inter­actions along the a-axis direction. The chains are connected via C—H⋯N inter­actions and the resultant layers stack along the b axis.

Related literature

For background to the synthesis, biological activity and structures of 1,2,3-triazole derivatives, see: Boechat et al. (2010[Boechat, N., Ferreira, M. de L. G., Maria Bastos, M. M., Camilo, A. L. S., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010). J. Chem. Crystallogr. 40, 1137-1141.], 2011[Boechat, N., Ferreira, V. F., Ferreira, S. B., Ferreira, M. de L. G., da Silva, F. de C., Bastos, M. M., Costa, M. dos S., Lourenço, M. C. S., Pinto, A. C., Krettli, A. U., Aguiar, A. C., Teixeira, B. M., da Silva, N. V., Martins, P. R. C., Bezerra, F. A. F. M., Camilo, A. L. S., da Silva, G. P. & Costa, C. C. P. (2011). J. Med. Chem. 54, 5988-5999.]); Costa et al. (2006a[Costa, M. S., Boechat, N., Ferreira, V. F., Wardell, S. M. S. V. & Skakle, J. M. S. (2006a). Acta Cryst. E62, o1925-o1927.],b[Costa, M. S., Boechat, N., Rangel, E. A., Lourenço, M. C. S., Junior, I. N., Castro, H. C., de Souza, A. M. T., da Silva, F. C., Wardell, S. M. S. V., Rodrigues, C. R. & Ferreira, V. F. (2006b). Bioorg. Med. Chem. 14, 8644-8653.]); Ferreira et al. (2007[Ferreira, S. B., Costa, M. S., Boechat, N., Bezerra, R. J. S., Genestra, M. S., Canto-Cavalheiro, M. M., Kover, W. B., Vitor, F. & Ferreira, V. F. (2007). Eur. J. Med. Chem. 42, 1388-1395.]); Jordão et al. (2009[Jordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C. B. V., Almeida, M. C. B., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V. J. L., Tiekink, E. R. T., Damaso, C. R., Anna, C. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777-3783.]). For the synthesis, see: Boechat et al. (2011[Boechat, N., Ferreira, V. F., Ferreira, S. B., Ferreira, M. de L. G., da Silva, F. de C., Bastos, M. M., Costa, M. dos S., Lourenço, M. C. S., Pinto, A. C., Krettli, A. U., Aguiar, A. C., Teixeira, B. M., da Silva, N. V., Martins, P. R. C., Bezerra, F. A. F. M., Camilo, A. L. S., da Silva, G. P. & Costa, C. C. P. (2011). J. Med. Chem. 54, 5988-5999.]). For additional geometric analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8ClN3O·0.5H2O

  • Mr = 218.64

  • Triclinic, [P \overline 1]

  • a = 6.0078 (4) Å

  • b = 7.4897 (4) Å

  • c = 22.3145 (15) Å

  • α = 88.818 (4)°

  • β = 89.901 (2)°

  • γ = 80.493 (4)°

  • V = 990.07 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 120 K

  • 0.18 × 0.18 × 0.02 mm

Data collection
  • Bruker–Nonius APEX II CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 1.000

  • 10830 measured reflections

  • 3909 independent reflections

  • 2948 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.163

  • S = 1.00

  • 3909 reflections

  • 274 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.84 (4) 1.82 (4) 2.651 (5) 170 (5)
O2—H2o⋯O1w 0.84 (6) 1.80 (5) 2.641 (5) 174 (7)
O1w—H1w⋯N3 0.84 (4) 2.00 (4) 2.837 (5) 172 (4)
O1w—H2w⋯O1ii 0.84 (4) 1.95 (5) 2.663 (5) 142 (4)
C16—H16⋯O1wiii 0.95 2.45 3.383 (5) 166
C7—H7⋯N6iv 0.95 2.28 3.197 (5) 161
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y, z; (iii) x-1, y, z; (iv) x-1, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Boechat and colleagues have been interested in the synthesis, biological activities and structures of 1,2,3-triazole derivatives for some time (Boechat et al., 2010, 2011; Costa et al., 2006a, 2006b; Ferreira et al., 2007, Jordão et al., 2009). Recently, they reported the synthesis and anti-mycobacterial activities of a number of 4-R-1-(X-phenyl)-triazole derivatives (Boechat et al., 2011). The structure of one of the compounds investigated in that study, i.e. the title compound, (I), is now reported.

Two independent molecules of a 1,2,3-triazole derivative and a water molecule of solvation comprise the asymmetric unit of (I), Fig. 1. Geometrically, the two organic molecules are similar to each other with r.m.s. deviations for bond distances and angles being 0.0092 Å and 0.757°, respectively (Spek, 2009). From the overlay diagram, Fig. 2, it is evident that the independent molecules approximate mirror images. However, small twists between the five- and six-membered rings differ with the dihedral angles between their least-squares being 12.71 (19) and 17.3 (2)°, respectively, for the N1- and N4-containing molecules. More notable are the relative orientations of the terminal CH2OH groups as seen in the values of the N3—C8—C9—O1 and N6—C17—C18—O2 torsion angles of 82.2 (5) and -60.3 (5)°, respectively.

The presence of a supramolecular chain along the a axis is the most prominent feature of the crystal packing, Fig. 3. These are mediated by O—H···O and O—H···N hydrogen bonds with additional stability afforded by C—H···O interactions, Table 1. Chains are connected into layers via C—H···N interactions, Table 1, and these stack along the b axis. The closest interactions between layers are of the type Cl···Cl, i.e. Cl1···Cl2i = 3.4117 (15) Å for i: 2 - x, 1 - y, 1 - z.

Related literature top

For background to the synthesis, biological activity and structures of 1,2,3-triazole derivatives, see: Boechat et al. (2010, 2011); Costa et al. (2006a,b); Ferreira et al. (2007); Jordão et al. (2009). For the synthesis, see: Boechat et al. (2011). For additional geometric analysis, see: Spek (2009).

Experimental top

The compound, obtained as published (Boechat et al., 2011), was recrystallized from EtOH as a hemihydrate.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O—H H atoms were located from a difference map and refined with O—H = 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the components comprising the asymmetric unit in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. An overlay diagram of the two independent molecules in (I). The red and blue images illustrate the N1- and N3-containing molecules, respectively.
[Figure 3] Fig. 3. A view of the supramolecular chain aligned along the a axis in (I) mediated by O—H···O (red dashed lines), O—H···N (blue) hydrogen bonds and C—H···O interactions (green).
[Figure 4] Fig. 4. A view in projection down the a axis of the unit-cell contents in (I) showing the stacking of layers along the b axis. The O—H···O, O—H···N and C—H···O interactions are shown as orange, blue and green dashed lines, respectively.
[1-(3-Chlorophenyl)-1H-1,2,3-triazol-4-yl]methanol hemihydrate top
Crystal data top
C9H8ClN3O·0.5H2OZ = 4
Mr = 218.64F(000) = 452
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0078 (4) ÅCell parameters from 19812 reflections
b = 7.4897 (4) Åθ = 2.9–27.5°
c = 22.3145 (15) ŵ = 0.36 mm1
α = 88.818 (4)°T = 120 K
β = 89.901 (2)°Plate, colourless
γ = 80.493 (4)°0.18 × 0.18 × 0.02 mm
V = 990.07 (11) Å3
Data collection top
Bruker–Nonius APEX II CCD camera on κ-goniostat
diffractometer
3909 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2948 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 2.9°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 99
Tmin = 0.843, Tmax = 1.000l = 2828
10830 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0446P)2 + 2.5602P]
where P = (Fo2 + 2Fc2)/3
3909 reflections(Δ/σ)max = 0.012
274 parametersΔρmax = 0.41 e Å3
5 restraintsΔρmin = 0.34 e Å3
Crystal data top
C9H8ClN3O·0.5H2Oγ = 80.493 (4)°
Mr = 218.64V = 990.07 (11) Å3
Triclinic, P1Z = 4
a = 6.0078 (4) ÅMo Kα radiation
b = 7.4897 (4) ŵ = 0.36 mm1
c = 22.3145 (15) ÅT = 120 K
α = 88.818 (4)°0.18 × 0.18 × 0.02 mm
β = 89.901 (2)°
Data collection top
Bruker–Nonius APEX II CCD camera on κ-goniostat
diffractometer
3909 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2948 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 1.000Rint = 0.038
10830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0645 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.41 e Å3
3909 reflectionsΔρmin = 0.34 e Å3
274 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85344 (17)0.75800 (15)0.46687 (4)0.0449 (3)
O10.5639 (6)0.7737 (5)0.05307 (13)0.0595 (9)
H1O0.629 (9)0.747 (7)0.0204 (13)0.089*
N10.6411 (5)0.8503 (4)0.24523 (13)0.0297 (6)
N20.8433 (5)0.7528 (4)0.23011 (14)0.0386 (7)
N30.8614 (6)0.7674 (4)0.17193 (14)0.0424 (8)
C10.6580 (6)0.8250 (5)0.41004 (15)0.0304 (7)
C20.4384 (6)0.8954 (5)0.42488 (16)0.0343 (8)
H20.39320.90550.46570.041*
C30.2852 (6)0.9509 (5)0.37926 (15)0.0331 (8)
H30.13381.00050.38890.040*
C40.3494 (6)0.9352 (5)0.31987 (16)0.0317 (8)
H40.24260.97240.28890.038*
C50.5708 (6)0.8647 (4)0.30588 (15)0.0280 (7)
C60.7280 (6)0.8092 (5)0.35095 (15)0.0314 (8)
H60.88010.76140.34140.038*
C70.5315 (6)0.9254 (5)0.19577 (15)0.0322 (8)
H70.38700.99920.19400.039*
C80.6716 (7)0.8731 (5)0.14894 (16)0.0381 (9)
C90.6412 (8)0.9160 (6)0.08392 (17)0.0484 (11)
H9A0.53091.02890.07840.058*
H9B0.78670.93680.06650.058*
Cl20.7137 (2)0.31120 (15)0.43211 (4)0.0519 (3)
O21.1922 (7)0.3320 (5)0.04279 (18)0.0843 (14)
H2O1.219 (12)0.422 (6)0.062 (3)0.126*
N40.7744 (5)0.2978 (4)0.20400 (13)0.0306 (6)
N50.9702 (5)0.1798 (5)0.21008 (15)0.0433 (8)
N61.0590 (6)0.1604 (5)0.15647 (16)0.0485 (9)
C100.5956 (6)0.3531 (5)0.36144 (16)0.0348 (8)
C110.3706 (6)0.4305 (5)0.35577 (16)0.0359 (8)
H110.27930.45870.39020.043*
C120.2826 (6)0.4657 (5)0.29895 (17)0.0389 (9)
H120.12930.52100.29430.047*
C130.4137 (6)0.4217 (5)0.24830 (16)0.0318 (8)
H130.35060.44450.20930.038*
C140.6367 (6)0.3444 (4)0.25557 (16)0.0309 (8)
C150.7315 (6)0.3090 (5)0.31195 (16)0.0323 (8)
H150.88550.25580.31660.039*
C160.7421 (6)0.3525 (5)0.14617 (16)0.0350 (8)
H160.61880.43480.12980.042*
C170.9245 (7)0.2643 (5)0.11626 (18)0.0395 (9)
C180.9826 (8)0.2697 (6)0.05057 (19)0.0538 (12)
H18A0.99280.14710.03390.065*
H18B0.86230.35160.02870.065*
O1W1.2489 (5)0.6147 (4)0.10634 (13)0.0491 (7)
H1W1.143 (6)0.661 (6)0.1286 (19)0.074*
H2W1.293 (8)0.698 (5)0.086 (2)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0387 (5)0.0620 (7)0.0332 (5)0.0063 (4)0.0052 (4)0.0013 (4)
O10.081 (2)0.077 (2)0.0334 (15)0.0501 (19)0.0214 (15)0.0252 (15)
N10.0308 (16)0.0279 (15)0.0314 (15)0.0076 (12)0.0057 (12)0.0036 (12)
N20.0380 (18)0.0384 (18)0.0380 (17)0.0016 (14)0.0155 (14)0.0037 (13)
N30.049 (2)0.0433 (19)0.0375 (18)0.0135 (15)0.0174 (16)0.0073 (14)
C10.0303 (18)0.0333 (19)0.0288 (17)0.0085 (14)0.0026 (14)0.0010 (14)
C20.037 (2)0.039 (2)0.0283 (18)0.0112 (16)0.0055 (16)0.0051 (15)
C30.0289 (18)0.039 (2)0.0310 (18)0.0040 (15)0.0073 (15)0.0030 (15)
C40.0339 (19)0.0316 (19)0.0298 (18)0.0061 (14)0.0050 (15)0.0024 (14)
C50.0308 (18)0.0259 (17)0.0283 (17)0.0074 (13)0.0036 (14)0.0025 (13)
C60.0280 (18)0.0317 (19)0.0348 (19)0.0056 (14)0.0070 (15)0.0043 (14)
C70.0345 (19)0.0354 (19)0.0290 (18)0.0120 (15)0.0024 (15)0.0039 (14)
C80.048 (2)0.038 (2)0.0327 (19)0.0193 (17)0.0104 (17)0.0109 (16)
C90.070 (3)0.051 (3)0.032 (2)0.032 (2)0.014 (2)0.0089 (18)
Cl20.0633 (7)0.0630 (7)0.0319 (5)0.0187 (5)0.0054 (5)0.0050 (4)
O20.093 (3)0.094 (3)0.085 (3)0.067 (2)0.063 (2)0.049 (2)
N40.0293 (15)0.0294 (15)0.0333 (16)0.0048 (12)0.0040 (12)0.0042 (12)
N50.0298 (17)0.050 (2)0.047 (2)0.0020 (14)0.0020 (15)0.0105 (15)
N60.0359 (19)0.057 (2)0.053 (2)0.0086 (16)0.0100 (17)0.0177 (17)
C100.043 (2)0.034 (2)0.0289 (18)0.0136 (16)0.0044 (16)0.0042 (14)
C110.041 (2)0.036 (2)0.0318 (19)0.0101 (16)0.0087 (16)0.0011 (15)
C120.034 (2)0.036 (2)0.045 (2)0.0018 (16)0.0087 (17)0.0016 (16)
C130.0333 (19)0.0312 (19)0.0316 (18)0.0075 (14)0.0006 (15)0.0011 (14)
C140.0329 (19)0.0259 (18)0.0355 (19)0.0087 (14)0.0080 (15)0.0039 (14)
C150.0308 (19)0.0333 (19)0.0340 (19)0.0086 (14)0.0009 (15)0.0027 (14)
C160.041 (2)0.034 (2)0.0316 (19)0.0113 (16)0.0063 (16)0.0002 (15)
C170.044 (2)0.038 (2)0.042 (2)0.0190 (17)0.0149 (18)0.0105 (17)
C180.061 (3)0.063 (3)0.046 (2)0.033 (2)0.026 (2)0.019 (2)
O1W0.0453 (17)0.065 (2)0.0381 (16)0.0109 (14)0.0155 (13)0.0064 (14)
Geometric parameters (Å, º) top
Cl1—C11.739 (4)O2—C181.423 (5)
O1—C91.422 (5)O2—H2O0.840 (10)
O1—H1O0.839 (10)N4—C161.350 (4)
N1—C71.350 (4)N4—N51.355 (4)
N1—N21.356 (4)N4—C141.431 (4)
N1—C51.418 (4)N5—N61.310 (5)
N2—N31.307 (4)N6—C171.353 (5)
N3—C81.370 (5)C10—C111.385 (5)
C1—C21.380 (5)C10—C151.385 (5)
C1—C61.385 (5)C11—C121.378 (5)
C2—C31.384 (5)C11—H110.9500
C2—H20.9500C12—C131.390 (5)
C3—C41.382 (5)C12—H120.9500
C3—H30.9500C13—C141.377 (5)
C4—C51.385 (5)C13—H130.9500
C4—H40.9500C14—C151.384 (5)
C5—C61.390 (5)C15—H150.9500
C6—H60.9500C16—C171.364 (5)
C7—C81.363 (5)C16—H160.9500
C7—H70.9500C17—C181.507 (5)
C8—C91.485 (5)C18—H18A0.9900
C9—H9A0.9900C18—H18B0.9900
C9—H9B0.9900O1W—H1W0.840 (10)
Cl2—C101.731 (4)O1W—H2W0.838 (10)
C9—O1—H1O115 (4)C16—N4—N5110.3 (3)
C7—N1—N2110.3 (3)C16—N4—C14130.2 (3)
C7—N1—C5128.6 (3)N5—N4—C14119.5 (3)
N2—N1—C5121.1 (3)N6—N5—N4106.6 (3)
N3—N2—N1106.9 (3)N5—N6—C17109.9 (3)
N2—N3—C8109.7 (3)C11—C10—C15121.9 (3)
C2—C1—C6121.7 (3)C11—C10—Cl2119.7 (3)
C2—C1—Cl1119.3 (3)C15—C10—Cl2118.5 (3)
C6—C1—Cl1119.0 (3)C12—C11—C10118.3 (3)
C1—C2—C3118.8 (3)C12—C11—H11120.8
C1—C2—H2120.6C10—C11—H11120.8
C3—C2—H2120.6C11—C12—C13121.3 (4)
C4—C3—C2120.9 (3)C11—C12—H12119.4
C4—C3—H3119.6C13—C12—H12119.4
C2—C3—H3119.6C14—C13—C12118.9 (3)
C3—C4—C5119.5 (3)C14—C13—H13120.6
C3—C4—H4120.3C12—C13—H13120.6
C5—C4—H4120.3C13—C14—C15121.4 (3)
C6—C5—C4120.7 (3)C13—C14—N4119.7 (3)
C6—C5—N1119.0 (3)C15—C14—N4118.8 (3)
C4—C5—N1120.4 (3)C14—C15—C10118.2 (3)
C5—C6—C1118.5 (3)C14—C15—H15120.9
C5—C6—H6120.7C10—C15—H15120.9
C1—C6—H6120.7N4—C16—C17105.2 (3)
N1—C7—C8105.6 (3)N4—C16—H16127.4
N1—C7—H7127.2C17—C16—H16127.4
C8—C7—H7127.2N6—C17—C16108.0 (3)
C7—C8—N3107.5 (3)N6—C17—C18122.0 (4)
C7—C8—C9129.8 (4)C16—C17—C18129.9 (4)
N3—C8—C9122.7 (3)O2—C18—C17109.9 (4)
O1—C9—C8111.6 (3)O2—C18—H18A109.7
O1—C9—H9A109.3C17—C18—H18A109.7
C8—C9—H9A109.3O2—C18—H18B109.7
O1—C9—H9B109.3C17—C18—H18B109.7
C8—C9—H9B109.3H18A—C18—H18B108.2
H9A—C9—H9B108.0H1W—O1W—H2W109 (4)
C18—O2—H2O120 (5)
C7—N1—N2—N30.5 (4)C16—N4—N5—N60.2 (4)
C5—N1—N2—N3179.0 (3)C14—N4—N5—N6179.2 (3)
N1—N2—N3—C80.3 (4)N4—N5—N6—C170.3 (4)
C6—C1—C2—C30.1 (5)C15—C10—C11—C120.7 (5)
Cl1—C1—C2—C3179.0 (3)Cl2—C10—C11—C12178.7 (3)
C1—C2—C3—C40.5 (5)C10—C11—C12—C131.3 (5)
C2—C3—C4—C50.7 (5)C11—C12—C13—C141.1 (5)
C3—C4—C5—C60.3 (5)C12—C13—C14—C150.4 (5)
C3—C4—C5—N1178.9 (3)C12—C13—C14—N4179.9 (3)
C7—N1—C5—C6166.4 (3)C16—N4—C14—C1317.2 (5)
N2—N1—C5—C612.9 (5)N5—N4—C14—C13162.1 (3)
C7—N1—C5—C412.8 (5)C16—N4—C14—C15163.2 (3)
N2—N1—C5—C4167.9 (3)N5—N4—C14—C1517.4 (5)
C4—C5—C6—C10.3 (5)C13—C14—C15—C100.1 (5)
N1—C5—C6—C1179.5 (3)N4—C14—C15—C10179.4 (3)
C2—C1—C6—C50.5 (5)C11—C10—C15—C140.0 (5)
Cl1—C1—C6—C5179.4 (3)Cl2—C10—C15—C14179.4 (3)
N2—N1—C7—C80.4 (4)N5—N4—C16—C170.1 (4)
C5—N1—C7—C8179.0 (3)C14—N4—C16—C17179.3 (3)
N1—C7—C8—N30.2 (4)N5—N6—C17—C160.3 (4)
N1—C7—C8—C9179.4 (3)N5—N6—C17—C18179.8 (3)
N2—N3—C8—C70.1 (4)N4—C16—C17—N60.1 (4)
N2—N3—C8—C9179.7 (3)N4—C16—C17—C18179.6 (4)
C7—C8—C9—O198.3 (5)N6—C17—C18—O260.3 (5)
N3—C8—C9—O182.2 (5)C16—C17—C18—O2120.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.84 (4)1.82 (4)2.651 (5)170 (5)
O2—H2o···O1w0.84 (6)1.80 (5)2.641 (5)174 (7)
O1w—H1w···N30.84 (4)2.00 (4)2.837 (5)172 (4)
O1w—H2w···O1ii0.84 (4)1.95 (5)2.663 (5)142 (4)
C16—H16···O1wiii0.952.453.383 (5)166
C7—H7···N6iv0.952.283.197 (5)161
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H8ClN3O·0.5H2O
Mr218.64
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.0078 (4), 7.4897 (4), 22.3145 (15)
α, β, γ (°)88.818 (4), 89.901 (2), 80.493 (4)
V3)990.07 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.18 × 0.18 × 0.02
Data collection
DiffractometerBruker–Nonius APEX II CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.843, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10830, 3909, 2948
Rint0.038
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.163, 1.00
No. of reflections3909
No. of parameters274
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.34

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.84 (4)1.82 (4)2.651 (5)170 (5)
O2—H2o···O1w0.84 (6)1.80 (5)2.641 (5)174 (7)
O1w—H1w···N30.84 (4)2.00 (4)2.837 (5)172 (4)
O1w—H2w···O1ii0.84 (4)1.95 (5)2.663 (5)142 (4)
C16—H16···O1wiii0.952.453.383 (5)166
C7—H7···N6iv0.952.283.197 (5)161
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBoechat, N., Ferreira, V. F., Ferreira, S. B., Ferreira, M. de L. G., da Silva, F. de C., Bastos, M. M., Costa, M. dos S., Lourenço, M. C. S., Pinto, A. C., Krettli, A. U., Aguiar, A. C., Teixeira, B. M., da Silva, N. V., Martins, P. R. C., Bezerra, F. A. F. M., Camilo, A. L. S., da Silva, G. P. & Costa, C. C. P. (2011). J. Med. Chem. 54, 5988–5999.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoechat, N., Ferreira, M. de L. G., Maria Bastos, M. M., Camilo, A. L. S., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010). J. Chem. Crystallogr. 40, 1137–1141.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCosta, M. S., Boechat, N., Ferreira, V. F., Wardell, S. M. S. V. & Skakle, J. M. S. (2006a). Acta Cryst. E62, o1925–o1927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosta, M. S., Boechat, N., Rangel, E. A., Lourenço, M. C. S., Junior, I. N., Castro, H. C., de Souza, A. M. T., da Silva, F. C., Wardell, S. M. S. V., Rodrigues, C. R. & Ferreira, V. F. (2006b). Bioorg. Med. Chem. 14, 8644–8653.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, S. B., Costa, M. S., Boechat, N., Bezerra, R. J. S., Genestra, M. S., Canto-Cavalheiro, M. M., Kover, W. B., Vitor, F. & Ferreira, V. F. (2007). Eur. J. Med. Chem. 42, 1388–1395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C. B. V., Almeida, M. C. B., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V. J. L., Tiekink, E. R. T., Damaso, C. R., Anna, C. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777–3783.  PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2934-o2935
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds