organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Aza-1-azoniabi­cyclo­[2.2.2]octa­ne–2-amino­benzoate–2-amino­benzoic acid (1/1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 October 2011; accepted 10 October 2011; online 12 October 2011)

A 4-aza-1-azoniabicyclo­[2.2.2]octane cation, a 2-amino­benzoate anion and a neutral 2-amino­benzoic acid mol­ecule comprise the asymmetric unit of the title compound, C6H13N2+·C7H6NO2·C7H7NO2. An intra­molecular N—H⋯O hydrogen bond occurs in the anion and in the neutral 2-amino­benzoic acid mol­ecule. The cation provides a charge-assisted N—H⋯O hydrogen bond to the anion, and the 2-amino­benzoic acid mol­ecule forms an O—H⋯N hydrogen bond to the unprotonated amino N atom in the cation. In this way, a three-component aggregate is formed. These are connected into a three-dimensional network by amino–carboxyl­ate N—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds are also observed.

Related literature

For related studies on co-crystal formation, see: Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.]); Arman & Tiekink (2010[Arman, H. D. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2188.]); Wardell & Tiekink (2011[Wardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418-1424.]). For examples of multi-component crystals containing the 2-amino­benzoate anion, see: Lynch et al. (1998[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587-592.]); Chen & Peng (2011[Chen, Z.-Y. & Peng, M.-X. (2011). J. Chem. Crystallogr. 41, 137-142.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13N2+·C7H6NO2·C7H7NO2

  • Mr = 386.45

  • Monoclinic, P 21 /c

  • a = 9.285 (3) Å

  • b = 16.843 (5) Å

  • c = 12.660 (4) Å

  • β = 102.127 (6)°

  • V = 1935.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.34 × 0.17 × 0.07 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.731, Tmax = 1.000

  • 16911 measured reflections

  • 4440 independent reflections

  • 3929 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.128

  • S = 1.13

  • 4440 reflections

  • 268 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N3 0.84 1.77 2.597 (2) 168
N4—H5n⋯O3 0.93 1.64 2.546 (2) 166
N1—H2n⋯O2 0.88 2.03 2.725 (2) 135
N2—H3n⋯O3 0.88 2.04 2.696 (2) 131
N1—H1n⋯O4i 0.88 2.08 2.941 (2) 165
N2—H4n⋯N1ii 0.88 2.38 3.256 (2) 171
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a part of on-going studies into co-crystallization experiments of carboxylic acids with N-containing molecules (Arman et al. 2010; Arman & Tiekink, 2010; Wardell & Tiekink, 2011), the 1:2 co-crystallization of 1,4-diazabicyclo[2.2.2]octane (DABCO) and 2-aminobenzoic was investigated, leading to the isolation of (I).

The crystallographic asymmetric unit of (I) comprises a 4-aza-1-azoniabicyclo(2.2.2)octane cation, Fig. 1, a 2-aminobenzoate anion, Fig. 2, and a neutral 2-aminobenzoic acid molecule, Fig. 3. While there are many examples of 4-aza-1-azoniabicyclo(2.2.2)octane cations and neutral 2-aminobenzoic acid molecules in the crystallographic literature (Allen, 2002), examples of 2-aminobenzoate anions are comparatively rare in all-organic molecules (Lynch et al., 1998; Chen & Peng, 2011). The ions and neutral benzoic acid derivative associate into a three-molecule aggregate via N+—H···O and O—H···N hydrogen bonds formed by and to the cation, Fig. 4 and Table 1; intramolecular N—H···O hydrogen bonds are also noted in the benzoate and benzoic acid species, Table 1.

The three component aggregates are connected into the three-dimensional architecture by hydrogen bonds involving the amino-H atoms not participating in intramolecular N—H···O interactions, Fig. 5 and Table 1.

Related literature top

For related studies on co-crystal formation, see: Arman et al. (2010); Arman & Tiekink (2010); Wardell & Tiekink (2011). For examples of multi-component crystals containing the 2-aminobenzoate anion, see: Lynch et al. (1998); Chen & Peng (2011). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Colourless crystals of (I) were isolated from the 1:2 co-crystallization of 1,4-diazabicyclo[2.2.2]octane (Sigma-Aldrich, 0.089 mmol) and anthranilic acid (Sigma-Aldrich, 0.19 mmol) in chloroform solution (6 ml); M.pt. 427–430 K.

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O—H 0.840±0.001 Å and N—H = 0.088±0.001 Å, respectively, and with Uiso(H) = 1.5Ueq(O, N).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the 4-aza-1-azoniabicyclo(2.2.2)octane cation in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of the 2-aminobenzoate anion in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Molecular structure of the neutral 2-aminobenzoic acid molecule in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. Three component aggregate in (I) held together by O—H···N and N—H···O hydrogen bonds shown as orange and blue dashed lines, respectively.
[Figure 5] Fig. 5. View in projection down the a axis of the unit-cell contents of (I). The O—H···N and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively.
4-Aza-1-azoniabicyclo[2.2.2]octane–2-aminobenzoate–2-aminobenzoic acid (1/1/1) top
Crystal data top
C6H13N2+·C7H6NO2·C7H7NO2F(000) = 824
Mr = 386.45Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8162 reflections
a = 9.285 (3) Åθ = 2.0–40.6°
b = 16.843 (5) ŵ = 0.09 mm1
c = 12.660 (4) ÅT = 98 K
β = 102.127 (6)°Block, colourless
V = 1935.7 (10) Å30.34 × 0.17 × 0.07 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4440 independent reflections
Radiation source: fine-focus sealed tube3929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.731, Tmax = 1.000k = 1921
16911 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.9109P]
where P = (Fo2 + 2Fc2)/3
4440 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.30 e Å3
7 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H13N2+·C7H6NO2·C7H7NO2V = 1935.7 (10) Å3
Mr = 386.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.285 (3) ŵ = 0.09 mm1
b = 16.843 (5) ÅT = 98 K
c = 12.660 (4) Å0.34 × 0.17 × 0.07 mm
β = 102.127 (6)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4440 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3929 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 1.000Rint = 0.054
16911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0567 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.13Δρmax = 0.30 e Å3
4440 reflectionsΔρmin = 0.23 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73506 (15)0.46965 (8)1.01396 (10)0.0286 (3)
H1o0.74330.47520.94950.043*
O20.63182 (15)0.35565 (8)0.94734 (10)0.0280 (3)
O30.87552 (13)0.60731 (8)0.46906 (9)0.0255 (3)
O40.63909 (13)0.62403 (7)0.38987 (10)0.0245 (3)
N10.58477 (16)0.24385 (8)1.09196 (12)0.0225 (3)
H1n0.52620.20751.11000.034*
H2n0.57100.25961.02430.034*
N21.07213 (17)0.69313 (11)0.38788 (13)0.0320 (4)
H3n1.05470.66970.44600.048*
H4n1.16310.70600.38500.048*
N30.76627 (15)0.50739 (8)0.82113 (11)0.0203 (3)
N40.79912 (15)0.55587 (8)0.63832 (11)0.0207 (3)
H5n0.81140.57350.57120.025*
C10.61784 (17)0.30546 (9)1.16546 (13)0.0184 (3)
C20.66288 (17)0.38151 (9)1.13704 (12)0.0175 (3)
C30.69563 (17)0.44053 (10)1.21593 (13)0.0200 (3)
H30.72290.49181.19590.024*
C40.68936 (19)0.42613 (11)1.32282 (13)0.0232 (3)
H40.71100.46711.37540.028*
C50.65063 (18)0.35033 (10)1.35151 (13)0.0228 (3)
H50.64930.33921.42490.027*
C60.61417 (17)0.29115 (10)1.27466 (13)0.0209 (3)
H60.58630.24021.29570.025*
C70.67418 (17)0.40032 (10)1.02372 (13)0.0192 (3)
C80.96688 (18)0.68766 (10)0.29348 (13)0.0211 (3)
C90.82171 (17)0.66015 (9)0.29093 (13)0.0185 (3)
C100.72053 (18)0.65777 (10)0.19229 (13)0.0211 (3)
H100.62270.64070.19120.025*
C110.7582 (2)0.67941 (10)0.09614 (14)0.0253 (4)
H110.68830.67590.02980.030*
C120.9008 (2)0.70645 (10)0.09858 (14)0.0259 (4)
H120.92830.72150.03330.031*
C131.00247 (19)0.71146 (10)0.19520 (14)0.0243 (4)
H131.09830.73130.19550.029*
C140.77248 (18)0.62962 (9)0.38957 (13)0.0190 (3)
C150.92485 (19)0.50551 (11)0.81698 (14)0.0254 (4)
H15A0.96410.45120.83320.031*
H15B0.98060.54200.87210.031*
C160.94441 (19)0.53077 (12)0.70394 (15)0.0289 (4)
H16A1.01540.57530.71030.035*
H16B0.98370.48580.66820.035*
C170.71221 (19)0.58987 (10)0.80251 (14)0.0241 (4)
H17A0.76390.62420.86200.029*
H17B0.60550.59160.80220.029*
C180.7387 (2)0.62134 (10)0.69428 (14)0.0262 (4)
H18A0.64500.64060.64910.031*
H18B0.80910.66620.70700.031*
C190.6829 (2)0.45573 (11)0.73500 (13)0.0255 (4)
H19A0.57800.45410.74030.031*
H19B0.72240.40100.74430.031*
C200.6952 (2)0.48755 (11)0.62315 (14)0.0294 (4)
H20A0.73180.44520.58130.035*
H20B0.59720.50480.58260.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0416 (7)0.0283 (7)0.0170 (6)0.0134 (5)0.0084 (5)0.0005 (5)
O20.0388 (7)0.0268 (7)0.0190 (6)0.0089 (5)0.0072 (5)0.0038 (5)
O30.0244 (6)0.0334 (7)0.0195 (6)0.0001 (5)0.0065 (5)0.0052 (5)
O40.0217 (6)0.0242 (6)0.0305 (7)0.0010 (5)0.0116 (5)0.0023 (5)
N10.0269 (7)0.0176 (7)0.0247 (7)0.0022 (5)0.0093 (6)0.0011 (6)
N20.0226 (7)0.0477 (10)0.0253 (8)0.0078 (7)0.0038 (6)0.0046 (7)
N30.0226 (7)0.0212 (7)0.0176 (6)0.0018 (5)0.0052 (5)0.0014 (5)
N40.0224 (7)0.0229 (7)0.0181 (6)0.0010 (5)0.0072 (5)0.0027 (5)
C10.0162 (7)0.0179 (8)0.0214 (8)0.0017 (6)0.0048 (6)0.0006 (6)
C20.0168 (7)0.0196 (8)0.0164 (7)0.0012 (6)0.0044 (6)0.0009 (6)
C30.0210 (7)0.0192 (8)0.0203 (8)0.0014 (6)0.0057 (6)0.0006 (6)
C40.0265 (8)0.0257 (9)0.0179 (8)0.0038 (6)0.0055 (6)0.0018 (7)
C50.0230 (8)0.0286 (9)0.0173 (8)0.0001 (6)0.0051 (6)0.0046 (7)
C60.0213 (8)0.0185 (8)0.0236 (8)0.0013 (6)0.0067 (7)0.0049 (6)
C70.0195 (7)0.0191 (8)0.0193 (8)0.0001 (6)0.0046 (6)0.0001 (6)
C80.0225 (8)0.0192 (8)0.0226 (8)0.0023 (6)0.0069 (6)0.0009 (6)
C90.0220 (8)0.0151 (7)0.0199 (8)0.0015 (6)0.0074 (6)0.0004 (6)
C100.0233 (8)0.0164 (8)0.0237 (8)0.0013 (6)0.0053 (6)0.0014 (6)
C110.0321 (9)0.0232 (9)0.0199 (8)0.0047 (7)0.0040 (7)0.0001 (7)
C120.0362 (9)0.0215 (8)0.0229 (8)0.0053 (7)0.0127 (7)0.0044 (7)
C130.0254 (8)0.0220 (8)0.0283 (9)0.0011 (6)0.0117 (7)0.0035 (7)
C140.0226 (8)0.0150 (7)0.0206 (8)0.0006 (6)0.0073 (6)0.0009 (6)
C150.0221 (8)0.0312 (9)0.0215 (8)0.0024 (7)0.0011 (7)0.0047 (7)
C160.0202 (8)0.0394 (11)0.0284 (9)0.0058 (7)0.0084 (7)0.0089 (8)
C170.0294 (9)0.0230 (8)0.0222 (8)0.0026 (7)0.0106 (7)0.0007 (7)
C180.0319 (9)0.0216 (8)0.0288 (9)0.0050 (7)0.0146 (8)0.0047 (7)
C190.0305 (9)0.0251 (9)0.0203 (8)0.0082 (7)0.0036 (7)0.0004 (7)
C200.0396 (10)0.0300 (10)0.0173 (8)0.0114 (8)0.0028 (7)0.0022 (7)
Geometric parameters (Å, º) top
O1—C71.315 (2)C6—H60.9500
O1—H1O0.8402C8—C131.411 (2)
O2—C71.223 (2)C8—C91.419 (2)
O3—C141.290 (2)C9—C101.397 (2)
O4—C141.243 (2)C9—C141.507 (2)
N1—C11.384 (2)C10—C111.384 (2)
N1—H1N0.8800C10—H100.9500
N1—H2N0.8802C11—C121.394 (3)
N2—C81.379 (2)C11—H110.9500
N2—H3N0.8800C12—C131.382 (3)
N2—H4N0.8799C12—H120.9500
N3—C171.479 (2)C13—H130.9500
N3—C191.480 (2)C15—C161.540 (2)
N3—C151.485 (2)C15—H15A0.9900
N4—C181.483 (2)C15—H15B0.9900
N4—C201.488 (2)C16—H16A0.9900
N4—C161.489 (2)C16—H16B0.9900
N4—H5N0.9300C17—C181.536 (2)
C1—C61.411 (2)C17—H17A0.9900
C1—C21.417 (2)C17—H17B0.9900
C2—C31.397 (2)C18—H18A0.9900
C2—C71.494 (2)C18—H18B0.9900
C3—C41.388 (2)C19—C201.541 (2)
C3—H30.9500C19—H19A0.9900
C4—C51.395 (2)C19—H19B0.9900
C4—H40.9500C20—H20A0.9900
C5—C61.384 (2)C20—H20B0.9900
C5—H50.9500
C7—O1—H1O108.5C10—C11—H11120.6
C1—N1—H1N114.1C12—C11—H11120.6
C1—N1—H2N113.2C13—C12—C11120.57 (16)
H1N—N1—H2N119.4C13—C12—H12119.7
C8—N2—H3N118.3C11—C12—H12119.7
C8—N2—H4N119.5C12—C13—C8121.35 (16)
H3N—N2—H4N119.5C12—C13—H13119.3
C17—N3—C19109.10 (14)C8—C13—H13119.3
C17—N3—C15108.67 (13)O4—C14—O3123.47 (15)
C19—N3—C15109.31 (14)O4—C14—C9120.27 (15)
C18—N4—C20109.67 (14)O3—C14—C9116.19 (14)
C18—N4—C16109.51 (14)N3—C15—C16109.79 (13)
C20—N4—C16109.83 (14)N3—C15—H15A109.7
C18—N4—H5N109.3C16—C15—H15A109.7
C20—N4—H5N109.3N3—C15—H15B109.7
C16—N4—H5N109.3C16—C15—H15B109.7
N1—C1—C6118.89 (15)H15A—C15—H15B108.2
N1—C1—C2122.85 (14)N4—C16—C15109.08 (13)
C6—C1—C2118.18 (15)N4—C16—H16A109.9
C3—C2—C1119.56 (14)C15—C16—H16A109.9
C3—C2—C7119.14 (14)N4—C16—H16B109.9
C1—C2—C7121.29 (14)C15—C16—H16B109.9
C4—C3—C2121.70 (15)H16A—C16—H16B108.3
C4—C3—H3119.2N3—C17—C18110.71 (13)
C2—C3—H3119.2N3—C17—H17A109.5
C3—C4—C5118.66 (16)C18—C17—H17A109.5
C3—C4—H4120.7N3—C17—H17B109.5
C5—C4—H4120.7C18—C17—H17B109.5
C6—C5—C4120.95 (15)H17A—C17—H17B108.1
C6—C5—H5119.5N4—C18—C17108.48 (13)
C4—C5—H5119.5N4—C18—H18A110.0
C5—C6—C1120.87 (15)C17—C18—H18A110.0
C5—C6—H6119.6N4—C18—H18B110.0
C1—C6—H6119.6C17—C18—H18B110.0
O2—C7—O1123.04 (15)H18A—C18—H18B108.4
O2—C7—C2123.56 (15)N3—C19—C20110.12 (14)
O1—C7—C2113.39 (14)N3—C19—H19A109.6
N2—C8—C13119.39 (16)C20—C19—H19A109.6
N2—C8—C9122.57 (15)N3—C19—H19B109.6
C13—C8—C9118.03 (15)C20—C19—H19B109.6
C10—C9—C8119.14 (15)H19A—C19—H19B108.2
C10—C9—C14117.83 (15)N4—C20—C19108.78 (14)
C8—C9—C14122.98 (15)N4—C20—H20A109.9
C11—C10—C9122.13 (16)C19—C20—H20A109.9
C11—C10—H10118.9N4—C20—H20B109.9
C9—C10—H10118.9C19—C20—H20B109.9
C10—C11—C12118.74 (16)H20A—C20—H20B108.3
N1—C1—C2—C3179.44 (14)C11—C12—C13—C81.6 (3)
C6—C1—C2—C32.8 (2)N2—C8—C13—C12179.51 (17)
N1—C1—C2—C71.4 (2)C9—C8—C13—C121.6 (2)
C6—C1—C2—C7178.02 (14)C10—C9—C14—O419.9 (2)
C1—C2—C3—C41.9 (2)C8—C9—C14—O4162.91 (15)
C7—C2—C3—C4178.95 (15)C10—C9—C14—O3157.33 (15)
C2—C3—C4—C50.6 (2)C8—C9—C14—O319.9 (2)
C3—C4—C5—C62.2 (3)C17—N3—C15—C1662.35 (18)
C4—C5—C6—C11.2 (3)C19—N3—C15—C1656.62 (19)
N1—C1—C6—C5178.09 (15)C18—N4—C16—C1557.55 (19)
C2—C1—C6—C51.3 (2)C20—N4—C16—C1562.94 (19)
C3—C2—C7—O2171.35 (16)N3—C15—C16—N45.0 (2)
C1—C2—C7—O27.8 (2)C19—N3—C17—C1862.15 (18)
C3—C2—C7—O19.0 (2)C15—N3—C17—C1856.95 (18)
C1—C2—C7—O1171.82 (15)C20—N4—C18—C1757.54 (18)
N2—C8—C9—C10178.78 (16)C16—N4—C18—C1763.04 (18)
C13—C8—C9—C100.1 (2)N3—C17—C18—N44.8 (2)
N2—C8—C9—C144.0 (3)C17—N3—C19—C2055.90 (18)
C13—C8—C9—C14177.12 (15)C15—N3—C19—C2062.81 (18)
C8—C9—C10—C111.8 (2)C18—N4—C20—C1963.53 (19)
C14—C9—C10—C11175.57 (15)C16—N4—C20—C1956.86 (19)
C9—C10—C11—C121.8 (3)N3—C19—C20—N45.3 (2)
C10—C11—C12—C130.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N30.841.772.597 (2)168
N4—H5n···O30.931.642.546 (2)166
N1—H2n···O20.882.032.725 (2)135
N2—H3n···O30.882.042.696 (2)131
N1—H1n···O4i0.882.082.941 (2)165
N2—H4n···N1ii0.882.383.256 (2)171
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H13N2+·C7H6NO2·C7H7NO2
Mr386.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)9.285 (3), 16.843 (5), 12.660 (4)
β (°) 102.127 (6)
V3)1935.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.17 × 0.07
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.731, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16911, 4440, 3929
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.128, 1.13
No. of reflections4440
No. of parameters268
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N30.841.772.597 (2)168
N4—H5n···O30.931.642.546 (2)166
N1—H2n···O20.882.032.725 (2)135
N2—H3n···O30.882.042.696 (2)131
N1—H1n···O4i0.882.082.941 (2)165
N2—H4n···N1ii0.882.383.256 (2)171
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The Ministry of Higher Education, Malaysia, is thanked for the award of a research grant in crystal engineering (RG125/10AFR).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, Z.-Y. & Peng, M.-X. (2011). J. Chem. Crystallogr. 41, 137–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587–592.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418–1424.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds