organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-4-methyl-6-phenyl­pyrimidin-2-amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 7 October 2011; accepted 7 October 2011; online 12 October 2011)

In the title compound, C18H17N3, the dihedral angles between the central pyrimidine ring and its directly-bonded and N-bonded pendant phenyl rings are 25.48 (6) and 80.33 (6)°, respectively. The dihedral angle between the phenyl rings is 79.66 (6)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops. The crystal structure also features weak ππ [centroid–centroid separation = 3.6720 (7) Å] and C—H⋯π inter­actions.

Related literature

For background to pyrimidine derivatives, see: Katrizky (1982[Katrizky, A. R. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 153-158.]); Brown & Lyall (1964[Brown, D. J. & Lyall, M. J. (1964). Aust. J. Chem. 17, 794-802.]). For a related structure, see: Goswami et al. (2009[Goswami, S., Hazra, A. & Jana, S. (2009). Bull. Chem. Soc. Jpn, 82, 1175-1181.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3

  • Mr = 275.35

  • Triclinic, [P \overline 1]

  • a = 8.2974 (1) Å

  • b = 9.9316 (2) Å

  • c = 10.7251 (2) Å

  • α = 115.797 (1)°

  • β = 93.019 (1)°

  • γ = 111.565 (1)°

  • V = 715.78 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.31 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.985

  • 14761 measured reflections

  • 3272 independent reflections

  • 2882 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.08

  • 3272 reflections

  • 258 parameters

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,N2/C7–C10 ring. Cg3 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N1i 0.909 (17) 2.147 (17) 3.0539 (14) 175.7 (14)
C5—H5ACg1ii 0.995 (14) 2.883 (15) 3.3595 (14) 110.3 (10)
C18—H18ACg3iii 0.960 (16) 2.846 (19) 3.7977 (16) 171.8 (13)
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted pyrimidine derivatives are important components of various bioactive molecules (Katrizky, 1982; Brown & Lyall, 1964). We have synthesised benzyl-(4-methyl-6-phenyl-pyrimidin-2-yl)-amine by solid-phase microwave irradiation (Goswami et al., 2009). Herein, we wish to report the crystal structure of the title compound, (I), (Fig. 1).

The central pyrimidine (N1,N2/C7–C10) ring makes dihedral angles of 25.48 (6) and 80.33 (6)° with the terminal phenyl (C1–C6/C12–C17) rings. The corresponding angle between the two terminal phenyl (C1–C6/C10–C15) rings is 79.66 (6)°.

In the crystal (Fig. 2), centrosymmetrically-related molecules are linked into dimers via pairs of N—H···N hydrogen bonds (Table 1), generating R22(8) ring motifs. (Bernstein et al., 1995). The crystal structure is further stabilized by ππ interactions between the benzene (Cg2; C1–C6) rings [Cg2···Cg2 = 3.6720 (7) Å; 1-x, -y, 1-z] and C—H···π interaction involving the centroids of the N1,N2/C7–C10 (Cg1) and C12–C17 (Cg3) rings.

Related literature top

For background to pyrimidine derivatives, see: Katrizky (1982); Brown & Lyall (1964). For a related structure, see: Goswami et al. (2009). For graph-set notation, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of S-methylisothiourea sulphate (556 mg, 2 mmol), potassium carbonate (345 mg, 2.5 mmol) and benzylamine ((428 mg, 4 mmol) was irradiated at 450 Watt for 18 minutes in a microwave oven. The solid mass was washed with chloroform to remove the unreacted benzylamine and then dried. The solid residue was then mixed with benzoyl acetone (648 mg, 4 mmol) and again irradiated at 300 Watt for 5 minutes. Water was added to it and the contents were extracted with chloroform. The crude product was then purified through column chromatography (silica gel, 100–200 mesh) using 12% ethyl acetate in petroleum ether as an eluent to afford the pure compound. Colourless blocks of (I) were grown by slow evaporation of a chloroform and methanol (3:1) solution. Mp 112–114°C.

Refinement top

All hydrogen atoms were located from a difference Fourier maps and refined freely [N–H = 0.909 (16) Å and C–H = 0.960 (16)– 1.008 (18) Å]. The highest residual electron density peak is located at 0.75 Å from C18 and the deepest hole 0.67 Å located at from C11.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
N-Benzyl-4-methyl-6-phenylpyrimidin-2-amine top
Crystal data top
C18H17N3Z = 2
Mr = 275.35F(000) = 292
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2974 (1) ÅCell parameters from 8187 reflections
b = 9.9316 (2) Åθ = 2.4–32.6°
c = 10.7251 (2) ŵ = 0.08 mm1
α = 115.797 (1)°T = 100 K
β = 93.019 (1)°Block, colourless
γ = 111.565 (1)°0.31 × 0.23 × 0.20 mm
V = 715.78 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3272 independent reflections
Radiation source: fine-focus sealed tube2882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.976, Tmax = 0.985k = 1212
14761 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.2057P]
where P = (Fo2 + 2Fc2)/3
3272 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H17N3γ = 111.565 (1)°
Mr = 275.35V = 715.78 (2) Å3
Triclinic, P1Z = 2
a = 8.2974 (1) ÅMo Kα radiation
b = 9.9316 (2) ŵ = 0.08 mm1
c = 10.7251 (2) ÅT = 100 K
α = 115.797 (1)°0.31 × 0.23 × 0.20 mm
β = 93.019 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3272 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2882 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.985Rint = 0.028
14761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103All H-atom parameters refined
S = 1.08Δρmax = 0.30 e Å3
3272 reflectionsΔρmin = 0.23 e Å3
258 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.90066 (12)0.08503 (11)0.12219 (9)0.0188 (2)
N20.87677 (11)0.12752 (11)0.33305 (9)0.0183 (2)
N30.97171 (13)0.17646 (11)0.15239 (10)0.0212 (2)
C10.71112 (14)0.21029 (13)0.56032 (11)0.0198 (2)
C20.65631 (15)0.26533 (14)0.68605 (12)0.0223 (2)
C30.65182 (15)0.19273 (14)0.77178 (12)0.0238 (2)
C40.70214 (15)0.06358 (15)0.73105 (12)0.0242 (2)
C50.75556 (15)0.00702 (14)0.60459 (12)0.0218 (2)
C60.76074 (13)0.07970 (13)0.51815 (11)0.0184 (2)
C70.81314 (14)0.01877 (13)0.38081 (11)0.0180 (2)
C80.79212 (14)0.14363 (14)0.30300 (12)0.0204 (2)
C90.83871 (14)0.19054 (13)0.17325 (11)0.0199 (2)
C100.91539 (13)0.07005 (13)0.20488 (11)0.0182 (2)
C110.98525 (15)0.34359 (13)0.22902 (12)0.0205 (2)
C120.80780 (14)0.35250 (13)0.24133 (11)0.0187 (2)
C130.65081 (15)0.23457 (14)0.13426 (12)0.0223 (2)
C140.48991 (16)0.24699 (15)0.14611 (13)0.0269 (3)
C150.48407 (16)0.37634 (16)0.26597 (14)0.0280 (3)
C160.64009 (16)0.49505 (14)0.37303 (13)0.0250 (3)
C170.80155 (15)0.48400 (13)0.36038 (12)0.0210 (2)
C180.81962 (18)0.36362 (15)0.08273 (13)0.0273 (3)
H1N31.005 (2)0.1438 (18)0.0687 (17)0.033 (4)*
H1A0.7119 (17)0.2595 (15)0.4979 (14)0.019 (3)*
H2A0.6173 (18)0.3557 (17)0.7140 (15)0.027 (3)*
H3A0.6092 (19)0.2292 (17)0.8604 (16)0.032 (4)*
H4A0.7012 (19)0.0135 (17)0.7921 (15)0.029 (4)*
H5A0.7917 (18)0.0852 (17)0.5761 (14)0.024 (3)*
H8A0.7447 (18)0.2220 (17)0.3358 (14)0.026 (3)*
H11A1.0675 (18)0.4045 (16)0.3265 (15)0.024 (3)*
H11B1.0416 (18)0.4018 (16)0.1759 (14)0.023 (3)*
H13A0.6563 (17)0.1413 (16)0.0507 (14)0.022 (3)*
H14A0.379 (2)0.1611 (18)0.0700 (16)0.033 (4)*
H15A0.369 (2)0.3830 (19)0.2750 (16)0.038 (4)*
H16A0.6346 (19)0.5878 (18)0.4579 (16)0.032 (4)*
H17A0.9114 (19)0.5707 (17)0.4357 (15)0.025 (3)*
H18A0.763 (2)0.4358 (19)0.1203 (16)0.038 (4)*
H18B0.749 (2)0.414 (2)0.0168 (19)0.047 (4)*
H18C0.939 (2)0.366 (2)0.0729 (18)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0189 (4)0.0202 (4)0.0175 (4)0.0093 (4)0.0045 (3)0.0088 (4)
N20.0171 (4)0.0204 (4)0.0173 (4)0.0082 (4)0.0051 (3)0.0090 (4)
N30.0274 (5)0.0207 (5)0.0203 (5)0.0127 (4)0.0119 (4)0.0114 (4)
C10.0185 (5)0.0198 (5)0.0189 (5)0.0062 (4)0.0046 (4)0.0094 (4)
C20.0205 (5)0.0216 (5)0.0221 (5)0.0086 (4)0.0064 (4)0.0087 (4)
C30.0215 (5)0.0275 (6)0.0172 (5)0.0086 (5)0.0063 (4)0.0082 (4)
C40.0252 (5)0.0286 (6)0.0196 (5)0.0099 (5)0.0060 (4)0.0138 (5)
C50.0210 (5)0.0231 (5)0.0209 (5)0.0096 (4)0.0046 (4)0.0107 (4)
C60.0147 (5)0.0194 (5)0.0167 (5)0.0047 (4)0.0029 (4)0.0076 (4)
C70.0145 (4)0.0211 (5)0.0180 (5)0.0072 (4)0.0028 (4)0.0098 (4)
C80.0211 (5)0.0216 (5)0.0210 (5)0.0092 (4)0.0065 (4)0.0125 (4)
C90.0193 (5)0.0200 (5)0.0196 (5)0.0085 (4)0.0035 (4)0.0092 (4)
C100.0148 (5)0.0216 (5)0.0183 (5)0.0082 (4)0.0035 (4)0.0097 (4)
C110.0227 (5)0.0192 (5)0.0202 (5)0.0086 (4)0.0074 (4)0.0103 (4)
C120.0227 (5)0.0194 (5)0.0177 (5)0.0092 (4)0.0065 (4)0.0118 (4)
C130.0272 (6)0.0205 (5)0.0182 (5)0.0096 (4)0.0037 (4)0.0096 (4)
C140.0237 (6)0.0258 (6)0.0297 (6)0.0070 (5)0.0002 (5)0.0162 (5)
C150.0239 (6)0.0317 (6)0.0395 (7)0.0152 (5)0.0113 (5)0.0237 (6)
C160.0310 (6)0.0232 (6)0.0277 (6)0.0149 (5)0.0133 (5)0.0148 (5)
C170.0245 (5)0.0191 (5)0.0191 (5)0.0081 (4)0.0061 (4)0.0102 (4)
C180.0380 (7)0.0222 (6)0.0237 (6)0.0144 (5)0.0117 (5)0.0113 (5)
Geometric parameters (Å, º) top
N1—C91.3399 (14)C8—C91.3884 (15)
N1—C101.3546 (13)C8—H8A0.955 (14)
N2—C71.3411 (14)C9—C181.5012 (15)
N2—C101.3476 (14)C11—C121.5163 (15)
N3—C101.3545 (14)C11—H11A0.998 (14)
N3—C111.4522 (13)C11—H11B0.996 (14)
N3—H1N30.909 (16)C12—C131.3920 (15)
C1—C21.3892 (15)C12—C171.3943 (15)
C1—C61.3992 (15)C13—C141.3925 (17)
C1—H1A0.985 (13)C13—H13A0.988 (13)
C2—C31.3883 (17)C14—C151.3858 (18)
C2—H2A0.995 (14)C14—H14A0.990 (15)
C3—C41.3913 (17)C15—C161.3884 (17)
C3—H3A0.994 (15)C15—H15A0.987 (16)
C4—C51.3909 (16)C16—C171.3926 (16)
C4—H4A0.978 (15)C16—H16A0.992 (14)
C5—C61.3951 (16)C17—H17A0.982 (14)
C5—H5A0.995 (14)C18—H18A0.960 (16)
C6—C71.4866 (15)C18—H18B0.993 (17)
C7—C81.3909 (15)C18—H18C1.008 (18)
C9—N1—C10115.99 (9)N2—C10—N1126.24 (10)
C7—N2—C10116.49 (9)N3—C10—N1116.72 (9)
C10—N3—C11121.48 (9)N3—C11—C12114.71 (9)
C10—N3—H1N3119.4 (9)N3—C11—H11A109.8 (7)
C11—N3—H1N3119.1 (9)C12—C11—H11A109.6 (7)
C2—C1—C6120.17 (10)N3—C11—H11B107.0 (7)
C2—C1—H1A120.9 (7)C12—C11—H11B108.3 (7)
C6—C1—H1A118.9 (7)H11A—C11—H11B107.2 (11)
C3—C2—C1120.50 (11)C13—C12—C17118.88 (10)
C3—C2—H2A119.6 (8)C13—C12—C11121.50 (9)
C1—C2—H2A119.9 (8)C17—C12—C11119.60 (10)
C2—C3—C4119.66 (10)C12—C13—C14120.63 (10)
C2—C3—H3A120.9 (8)C12—C13—H13A118.3 (8)
C4—C3—H3A119.4 (8)C14—C13—H13A121.0 (8)
C5—C4—C3120.06 (11)C15—C14—C13120.17 (11)
C5—C4—H4A120.1 (8)C15—C14—H14A120.0 (8)
C3—C4—H4A119.8 (8)C13—C14—H14A119.8 (8)
C4—C5—C6120.55 (10)C14—C15—C16119.64 (11)
C4—C5—H5A119.7 (8)C14—C15—H15A119.9 (9)
C6—C5—H5A119.7 (8)C16—C15—H15A120.5 (9)
C5—C6—C1119.06 (10)C15—C16—C17120.23 (11)
C5—C6—C7121.54 (10)C15—C16—H16A119.0 (8)
C1—C6—C7119.38 (10)C17—C16—H16A120.8 (8)
N2—C7—C8121.45 (10)C16—C17—C12120.44 (10)
N2—C7—C6116.37 (9)C16—C17—H17A119.2 (8)
C8—C7—C6122.15 (10)C12—C17—H17A120.3 (8)
C9—C8—C7117.87 (10)C9—C18—H18A112.6 (9)
C9—C8—H8A120.5 (8)C9—C18—H18B111.5 (10)
C7—C8—H8A121.7 (8)H18A—C18—H18B108.1 (13)
N1—C9—C8121.93 (10)C9—C18—H18C112.2 (10)
N1—C9—C18116.91 (10)H18A—C18—H18C107.2 (13)
C8—C9—C18121.15 (10)H18B—C18—H18C104.9 (13)
N2—C10—N3117.03 (9)
C6—C1—C2—C30.63 (16)C7—C8—C9—C18179.86 (10)
C1—C2—C3—C40.19 (17)C7—N2—C10—N3176.97 (9)
C2—C3—C4—C50.40 (17)C7—N2—C10—N11.94 (15)
C3—C4—C5—C60.55 (17)C11—N3—C10—N21.62 (15)
C4—C5—C6—C10.10 (16)C11—N3—C10—N1177.39 (9)
C4—C5—C6—C7178.51 (10)C9—N1—C10—N21.20 (15)
C2—C1—C6—C50.49 (16)C9—N1—C10—N3177.71 (9)
C2—C1—C6—C7177.95 (9)C10—N3—C11—C1266.03 (13)
C10—N2—C7—C81.35 (15)N3—C11—C12—C1332.47 (15)
C10—N2—C7—C6176.58 (9)N3—C11—C12—C17149.37 (10)
C5—C6—C7—N2156.38 (10)C17—C12—C13—C140.39 (17)
C1—C6—C7—N225.21 (14)C11—C12—C13—C14178.56 (10)
C5—C6—C7—C825.70 (15)C12—C13—C14—C150.80 (18)
C1—C6—C7—C8152.70 (10)C13—C14—C15—C161.10 (18)
N2—C7—C8—C90.20 (15)C14—C15—C16—C170.22 (18)
C6—C7—C8—C9177.61 (9)C15—C16—C17—C120.98 (17)
C10—N1—C9—C80.13 (15)C13—C12—C17—C161.27 (16)
C10—N1—C9—C18179.44 (9)C11—C12—C17—C16179.48 (10)
C7—C8—C9—N10.58 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,N2/C7–C10 ring. Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N1i0.909 (17)2.147 (17)3.0539 (14)175.7 (14)
C5—H5A···Cg1ii0.995 (14)2.883 (15)3.3595 (14)110.3 (10)
C18—H18A···Cg3iii0.960 (16)2.846 (19)3.7977 (16)171.8 (13)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H17N3
Mr275.35
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.2974 (1), 9.9316 (2), 10.7251 (2)
α, β, γ (°)115.797 (1), 93.019 (1), 111.565 (1)
V3)715.78 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.976, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
14761, 3272, 2882
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.08
No. of reflections3272
No. of parameters258
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,N2/C7–C10 ring. Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N1i0.909 (17)2.147 (17)3.0539 (14)175.7 (14)
C5—H5A···Cg1ii0.995 (14)2.883 (15)3.3595 (14)110.3 (10)
C18—H18A···Cg3iii0.960 (16)2.846 (19)3.7977 (16)171.8 (13)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1; (iii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/EMR-II], Government of India, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrown, D. J. & Lyall, M. J. (1964). Aust. J. Chem. 17, 794–802.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S., Hazra, A. & Jana, S. (2009). Bull. Chem. Soc. Jpn, 82, 1175–1181.  Web of Science CrossRef CAS Google Scholar
First citationKatrizky, A. R. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 153–158.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds