metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(3-Eth­­oxy-2-oxido­benzyl­­idene-κO2)-4-methyl­benzohydrazidato-κ2O,N′](methano­lato-κO)oxidovanadium(V)

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 8 October 2011; accepted 10 October 2011; online 12 October 2011)

The title oxidovanadium(V) complex, [V(C17H16N2O3)(CH3O)O], was obtained by the reaction of 3-eth­oxy-2-hy­droxy­benzaldehyde, 4-methyl­benzohydrazide and vanadyl sulfate in methanol. The VV atom is coordinated by the O,N,O′-tridentate Schiff base ligand, one methano­late O atom and one oxide O atom, forming a distorted VO4N square-pyramidal coordination geometry. The oxide O atom lies at the apex of the square pyramid and the N atom of the ligand and the methano­late O atom are trans. The dihedral angle between the benzene rings of the ligand is 1.8 (3)°.

Related literature

For background to Schiff base complexes, see: Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]); Wang & Ye (2011[Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]). For similar vanadium(V) complexes, see: Wang et al. (2011[Wang, C.-Y., Hu, J.-J., Tu, H.-Y., Zhu, P.-F. & Sheng, S.-J. (2011). Acta Cryst. E67, m1475-m1476.]); Deng et al. (2005[Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214-m2216.]); Gao et al. (2005[Gao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978-m980.]); Huo et al. (2004[Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606-m608.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C17H16N2O3)(CH3O)O]

  • Mr = 394.29

  • Monoclinic, P 21 /c

  • a = 7.6954 (16) Å

  • b = 28.345 (3) Å

  • c = 8.3877 (18) Å

  • β = 105.175 (2)°

  • V = 1765.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.842, Tmax = 0.856

  • 14022 measured reflections

  • 4044 independent reflections

  • 2986 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.110

  • S = 1.05

  • 4044 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

V1—O5 1.5813 (17)
V1—O4 1.7499 (17)
V1—O1 1.8326 (16)
V1—O3 1.9170 (16)
V1—N1 2.1031 (19)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into new Schiff base complexes and urease inhibition (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, (I), a new mononuclear oxovanadium(V) complex, Fig. 1. The V atom in the complex is five-coordinated by the O,N,O-tridentate Schiff base ligand, one methanolate O atom, and one oxide O atom, forming a distorted square-pyramidal geometry. The oxide O atom lies on the apical position of the square-pyramidal geometry. The dihedral angle between the two benzene rings is 1.8 (3)°. The V–O and V–N bond lengths (Table 1) are typical and are comparable with those observed in other similar vanadium complexes (Wang et al., 2011; Deng et al., 2005; Gao et al., 2005; Huo et al., 2004).

Related literature top

For background to Schiff base complexes, see: Wang (2009); Wang & Ye (2011). For similar vanadium(V) complexes, see: Wang et al. (2011); Deng et al. (2005); Gao et al. (2005); Huo et al. (2004).

Experimental top

3-Ethoxy-2-hydroxybenzaldehyde (1.0 mmol, 0.17 g), 4-methylbenzohydrazide (1.0 mmol, 0.15 g), and vanadyl sulfate (1.0 mmol, 0.16 g) were dissolved in methanol (30 ml). The mixture was stirred at room temperature for 10 min to give a clear brown solution. After keeping the solution in air for a week, brown block-shaped crystals were formed at the bottom of the vessel.

Refinement top

Hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[N'-(3-Ethoxy-2-oxidobenzylidene-κO2)-4- methylbenzohydrazidato-κ2O,N'](methanolato- κO)oxidovanadium(V) top
Crystal data top
[V(C17H16N2O3)(CH3O)O]F(000) = 816
Mr = 394.29Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3023 reflections
a = 7.6954 (16) Åθ = 2.6–25.0°
b = 28.345 (3) ŵ = 0.59 mm1
c = 8.3877 (18) ÅT = 298 K
β = 105.175 (2)°Block, brown
V = 1765.8 (6) Å30.30 × 0.27 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4044 independent reflections
Radiation source: fine-focus sealed tube2986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.842, Tmax = 0.856k = 3635
14022 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.4204P]
where P = (Fo2 + 2Fc2)/3
4044 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[V(C17H16N2O3)(CH3O)O]V = 1765.8 (6) Å3
Mr = 394.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6954 (16) ŵ = 0.59 mm1
b = 28.345 (3) ÅT = 298 K
c = 8.3877 (18) Å0.30 × 0.27 × 0.27 mm
β = 105.175 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4044 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2986 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.856Rint = 0.039
14022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
4044 reflectionsΔρmin = 0.30 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.23672 (5)0.414915 (13)0.47578 (5)0.03413 (14)
N10.1850 (2)0.34208 (6)0.4771 (2)0.0333 (4)
N20.0915 (3)0.32243 (7)0.3264 (2)0.0386 (5)
O10.3948 (2)0.40199 (5)0.67570 (19)0.0407 (4)
O20.5797 (2)0.42530 (6)0.9805 (2)0.0477 (5)
O30.1583 (2)0.39594 (6)0.24884 (19)0.0411 (4)
O40.3495 (2)0.46251 (6)0.4152 (2)0.0478 (4)
O50.0567 (2)0.43456 (6)0.5082 (2)0.0479 (4)
C10.3177 (3)0.32665 (8)0.7653 (3)0.0342 (5)
C20.4022 (3)0.37085 (8)0.7972 (3)0.0340 (5)
C30.5005 (3)0.38212 (9)0.9597 (3)0.0386 (6)
C40.5096 (3)0.34910 (10)1.0833 (3)0.0466 (6)
H40.57240.35641.19100.056*
C50.4279 (3)0.30551 (10)1.0504 (3)0.0498 (7)
H50.43760.28391.13580.060*
C60.3330 (3)0.29378 (9)0.8939 (3)0.0422 (6)
H60.27890.26430.87260.051*
C70.2177 (3)0.31382 (8)0.6028 (3)0.0350 (5)
H70.17310.28320.58600.042*
C80.0825 (3)0.35451 (8)0.2130 (3)0.0336 (5)
C90.0137 (3)0.34495 (8)0.0398 (3)0.0324 (5)
C100.0244 (3)0.37956 (9)0.0791 (3)0.0411 (6)
H100.03170.40850.04990.049*
C110.1182 (3)0.37113 (9)0.2405 (3)0.0449 (6)
H110.12480.39470.31880.054*
C120.2024 (3)0.32857 (9)0.2889 (3)0.0388 (6)
C130.1894 (3)0.29402 (9)0.1695 (3)0.0439 (6)
H130.24400.26490.19940.053*
C140.0972 (3)0.30194 (8)0.0072 (3)0.0393 (6)
H140.09110.27830.07100.047*
C150.3043 (4)0.32044 (11)0.4656 (3)0.0559 (7)
H15A0.38650.34610.50280.084*
H15B0.37040.29140.47400.084*
H15C0.22120.31860.53310.084*
C160.6757 (4)0.43846 (10)1.1461 (3)0.0546 (7)
H16A0.76810.41531.19170.065*
H16B0.59350.43991.21610.065*
C170.7590 (4)0.48552 (11)1.1390 (4)0.0727 (10)
H17A0.84650.48331.07610.109*
H17B0.81690.49591.24900.109*
H17C0.66740.50781.08730.109*
C180.2882 (4)0.50506 (11)0.3339 (4)0.0795 (11)
H18A0.19820.49850.23330.119*
H18B0.38730.52130.30900.119*
H18C0.23730.52440.40400.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0416 (2)0.0292 (2)0.0292 (2)0.00241 (17)0.00511 (16)0.00033 (17)
N10.0382 (10)0.0303 (10)0.0294 (10)0.0005 (8)0.0050 (8)0.0002 (8)
N20.0492 (12)0.0339 (11)0.0280 (10)0.0048 (9)0.0018 (8)0.0042 (8)
O10.0486 (10)0.0349 (9)0.0324 (9)0.0063 (7)0.0004 (7)0.0007 (7)
O20.0515 (10)0.0465 (11)0.0352 (10)0.0005 (8)0.0063 (8)0.0065 (8)
O30.0569 (10)0.0346 (9)0.0302 (9)0.0100 (8)0.0086 (7)0.0009 (7)
O40.0544 (10)0.0414 (10)0.0427 (10)0.0136 (8)0.0042 (8)0.0062 (8)
O50.0524 (10)0.0444 (10)0.0480 (11)0.0074 (8)0.0151 (8)0.0006 (8)
C10.0334 (11)0.0370 (13)0.0315 (12)0.0051 (10)0.0071 (9)0.0009 (10)
C20.0355 (12)0.0344 (12)0.0304 (12)0.0080 (10)0.0057 (9)0.0025 (10)
C30.0381 (12)0.0412 (14)0.0339 (13)0.0079 (10)0.0049 (10)0.0038 (10)
C40.0488 (14)0.0608 (18)0.0259 (13)0.0095 (13)0.0021 (10)0.0025 (12)
C50.0573 (16)0.0549 (17)0.0357 (14)0.0058 (13)0.0093 (12)0.0144 (13)
C60.0450 (13)0.0436 (15)0.0381 (14)0.0015 (11)0.0110 (11)0.0085 (11)
C70.0397 (12)0.0291 (12)0.0353 (13)0.0004 (9)0.0084 (10)0.0010 (10)
C80.0378 (12)0.0325 (12)0.0309 (12)0.0002 (10)0.0094 (9)0.0009 (10)
C90.0358 (12)0.0339 (12)0.0277 (12)0.0035 (9)0.0086 (9)0.0019 (10)
C100.0516 (14)0.0368 (14)0.0353 (13)0.0018 (11)0.0124 (11)0.0004 (11)
C110.0546 (15)0.0486 (15)0.0337 (14)0.0082 (12)0.0157 (11)0.0093 (12)
C120.0367 (12)0.0491 (15)0.0304 (13)0.0055 (11)0.0083 (10)0.0018 (11)
C130.0478 (14)0.0448 (15)0.0359 (14)0.0070 (11)0.0054 (11)0.0056 (11)
C140.0466 (13)0.0382 (14)0.0306 (13)0.0010 (11)0.0058 (10)0.0024 (10)
C150.0592 (16)0.071 (2)0.0323 (14)0.0095 (15)0.0031 (12)0.0006 (14)
C160.0515 (15)0.0630 (18)0.0385 (15)0.0086 (14)0.0072 (12)0.0153 (13)
C170.071 (2)0.062 (2)0.067 (2)0.0001 (16)0.0148 (16)0.0230 (17)
C180.069 (2)0.062 (2)0.092 (3)0.0136 (16)0.0071 (18)0.0393 (18)
Geometric parameters (Å, º) top
V1—O51.5813 (17)C8—C91.473 (3)
V1—O41.7499 (17)C9—C101.386 (3)
V1—O11.8326 (16)C9—C141.386 (3)
V1—O31.9170 (16)C10—C111.378 (3)
V1—N12.1031 (19)C10—H100.9300
N1—C71.295 (3)C11—C121.380 (3)
N1—N21.396 (2)C11—H110.9300
N2—C81.305 (3)C12—C131.385 (3)
O1—C21.338 (3)C12—C151.502 (3)
O2—C31.358 (3)C13—C141.379 (3)
O2—C161.441 (3)C13—H130.9300
O3—C81.311 (3)C14—H140.9300
O4—C181.405 (3)C15—H15A0.9600
C1—C21.405 (3)C15—H15B0.9600
C1—C61.407 (3)C15—H15C0.9600
C1—C71.426 (3)C16—C171.488 (4)
C2—C31.412 (3)C16—H16A0.9700
C3—C41.384 (3)C16—H16B0.9700
C4—C51.381 (4)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.366 (3)C17—H17C0.9600
C5—H50.9300C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
O5—V1—O4107.58 (9)C10—C9—C14118.8 (2)
O5—V1—O1108.34 (9)C10—C9—C8120.0 (2)
O4—V1—O199.14 (8)C14—C9—C8121.2 (2)
O5—V1—O3101.98 (8)C11—C10—C9120.1 (2)
O4—V1—O388.79 (7)C11—C10—H10119.9
O1—V1—O3144.43 (8)C9—C10—H10119.9
O5—V1—N199.74 (8)C10—C11—C12121.7 (2)
O4—V1—N1150.14 (8)C10—C11—H11119.1
O1—V1—N183.11 (7)C12—C11—H11119.1
O3—V1—N173.70 (7)C11—C12—C13117.8 (2)
C7—N1—N2115.75 (19)C11—C12—C15120.6 (2)
C7—N1—V1127.94 (16)C13—C12—C15121.7 (2)
N2—N1—V1116.11 (13)C14—C13—C12121.3 (2)
C8—N2—N1107.35 (18)C14—C13—H13119.3
C2—O1—V1135.60 (15)C12—C13—H13119.3
C3—O2—C16117.1 (2)C13—C14—C9120.3 (2)
C8—O3—V1118.96 (14)C13—C14—H14119.8
C18—O4—V1132.35 (17)C9—C14—H14119.8
C2—C1—C6120.2 (2)C12—C15—H15A109.5
C2—C1—C7121.1 (2)C12—C15—H15B109.5
C6—C1—C7118.7 (2)H15A—C15—H15B109.5
O1—C2—C1121.2 (2)C12—C15—H15C109.5
O1—C2—C3119.4 (2)H15A—C15—H15C109.5
C1—C2—C3119.4 (2)H15B—C15—H15C109.5
O2—C3—C4125.5 (2)O2—C16—C17108.1 (2)
O2—C3—C2115.9 (2)O2—C16—H16A110.1
C4—C3—C2118.6 (2)C17—C16—H16A110.1
C5—C4—C3121.6 (2)O2—C16—H16B110.1
C5—C4—H4119.2C17—C16—H16B110.1
C3—C4—H4119.2H16A—C16—H16B108.4
C6—C5—C4120.7 (2)C16—C17—H17A109.5
C6—C5—H5119.6C16—C17—H17B109.5
C4—C5—H5119.6H17A—C17—H17B109.5
C5—C6—C1119.5 (2)C16—C17—H17C109.5
C5—C6—H6120.3H17A—C17—H17C109.5
C1—C6—H6120.3H17B—C17—H17C109.5
N1—C7—C1124.2 (2)O4—C18—H18A109.5
N1—C7—H7117.9O4—C18—H18B109.5
C1—C7—H7117.9H18A—C18—H18B109.5
N2—C8—O3121.5 (2)O4—C18—H18C109.5
N2—C8—C9120.5 (2)H18A—C18—H18C109.5
O3—C8—C9118.0 (2)H18B—C18—H18C109.5

Experimental details

Crystal data
Chemical formula[V(C17H16N2O3)(CH3O)O]
Mr394.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.6954 (16), 28.345 (3), 8.3877 (18)
β (°) 105.175 (2)
V3)1765.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.842, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
14022, 4044, 2986
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.05
No. of reflections4044
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O51.5813 (17)V1—O31.9170 (16)
V1—O41.7499 (17)V1—N12.1031 (19)
V1—O11.8326 (16)
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Applied Research Project on Nonprofit Tchnology of Zhejiang Province (No. 2010 C32060), the Zhejiang Provincial Natural Science Foundation of China (No. Y407318), and the Technological Innovation Project (sinfonietta talent plan) of College Students in Zhejiang Province (No. 2010R42525 & No. 2011R425027).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214–m2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978–m980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-Y., Hu, J.-J., Tu, H.-Y., Zhu, P.-F. & Sheng, S.-J. (2011). Acta Cryst. E67, m1475–m1476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds