organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Hy­dr­oxy-N′-(3,4,5-trimeth­­oxy­benzyl­­idene)benzohydrazide

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 8 October 2011; accepted 9 October 2011; online 22 October 2011)

The title benzohydrazide derivative, C17H18N2O5, exists in a trans conformation with respect to the C=N double bond. The dihedral angle between the benzene rings is 19.41 (5)°. The two meth­oxy groups at the meta positions of the trimeth­oxy­benzene group are almost coplanar with the ring [C—O—C—C = 1.62 (16) and 178.33 (10)°], whereas the third meth­oxy group, at the para position, is (+)-synclinal with the ring. In the crystal, mol­ecules are linked by N—H⋯O and bifurcated O—H⋯(N,O) hydrogen bonds, as well as weak C—H⋯O inter­actions, into sheets lying parallel to the ac plane. A C—H⋯π inter­action also occurs.

Related literature

For a related structure and background references to benzohydrazide derivatives, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]). For related structures, see: Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.]); Zhang (2011[Zhang, Z. (2011). Acta Cryst. E67, o300.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O5

  • Mr = 330.33

  • Orthorhombic, P b c a

  • a = 14.4623 (8) Å

  • b = 10.9202 (6) Å

  • c = 19.5592 (10) Å

  • V = 3089.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 297 K

  • 0.39 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.979

  • 20210 measured reflections

  • 4500 independent reflections

  • 3777 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.03

  • 4500 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1i 0.87 (2) 1.87 (2) 2.6646 (11) 152 (2)
O2—H1O2⋯N2i 0.87 (2) 2.56 (2) 3.2381 (13) 136.2 (18)
N1—H1N1⋯O4ii 0.874 (17) 2.088 (17) 2.8891 (12) 152.0 (16)
C6—H6A⋯O4ii 0.93 2.51 3.4116 (14) 165
C16—H16BCg1iii 0.96 2.63 3.4572 (17) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of benzohydrazide derivatives with possible antibacterial activities (Fun et al., 2011), we now report the synthesis and structure of the title compound, (I). The antibacterial activity of (I) will be reported elsewhere with other related benzohydrazide derivatives.

The molecule of the title benzohydrazide derivative (Fig. 1), C17H18N2O5, exists in a trans-configuration with respect to the C8N2 bond [1.2821 (15) Å] and the torsion angle N1–N2–C8–C9 = 178.33 (10)°. The molecule is twisted with the dihedral angle between the two benzene rings being 19.41 (5)°. The middle fragment is slightly twisted which can be indicated by the torsion angle O1–C7–N1–N2 = -6.63 (15)°. The mean plane through this middle bridge (O1/C7/N1/N2/C8) makes the dihedral angles of 12.06 (6) and 8.39 (6)° with the planes of 4-hydroxyphenyl and 3,4,5-trimethoxyphenyl rings, respectively. The three methoxy groups of the 3,4,5-trimethoxyphenyl unit have two different orientations: the two meta methoxy groups (at atoms C11 and C13 positions) are co-planar with their attached benzene ring with torsion angles C15–O3–C11–C10 = 1.62 (16)° and C17–O5–C13–C12 = 178.33 (10)° whereas the para methoxy is (+)-syn-clinally attached at atom C12 with the torsion angle C16–O4–C12–C11 = 71.28 (15)°. Bond distances are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Li & Ban, 2009; Zhang, 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O, O—H···N and O—H···O hydrogen bonds as well as with weak C—H···O interactions (Table 1) into sheets parallel to the ac plane. The crystal structure is stabilized by N—H···O, O—H···N, O—H···O hydrogen bonds, weak C—H···O and C—H···π interactions (Table 1).

Related literature top

For a related structure and background references to benzohydrazide derivatives, see: Fun et al. (2011). For related structures, see: Li & Ban (2009); Zhang (2011). For reference bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was prepared by dissolving 4-hydroxybenzohydrazide (0.1 mmol, 0.15 g) in ethanol (15 ml) and a solution of 3,4,5-trimethoxybenzaldehyde (0.1 mmol, 0.19 g) in ethanol (15 ml) was then added to it0. The mixture was refluxed for around 3 hr and the white solid of the product that appeared was collected by filtration, washed with ethanol and dried in air. Colorless blocks of (I) were obtained after recrystalization from methanol by slow evaporation of the solvent at room temperature after several days, Mp. 532-533 K.

Refinement top

Amide and hydroxy H atoms were located from the difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, Hydrogen bonds were shown as dashed lines.
(E)-4-Hydroxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide top
Crystal data top
C17H18N2O5Dx = 1.421 Mg m3
Mr = 330.33Melting point = 533–532 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4500 reflections
a = 14.4623 (8) Åθ = 2.1–30.0°
b = 10.9202 (6) ŵ = 0.11 mm1
c = 19.5592 (10) ÅT = 297 K
V = 3089.0 (3) Å3Block, colorless
Z = 80.39 × 0.21 × 0.20 mm
F(000) = 1392
Data collection top
Bruker SMART APEXII CCD
diffractometer
4500 independent reflections
Radiation source: fine-focus sealed tube3777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω scansh = 1820
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1514
Tmin = 0.960, Tmax = 0.979l = 2727
20210 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.5827P]
where P = (Fo2 + 2Fc2)/3
4500 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C17H18N2O5V = 3089.0 (3) Å3
Mr = 330.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.4623 (8) ŵ = 0.11 mm1
b = 10.9202 (6) ÅT = 297 K
c = 19.5592 (10) Å0.39 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3777 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.979Rint = 0.028
20210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
4500 reflectionsΔρmin = 0.32 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02505 (5)1.10904 (8)0.80535 (4)0.01825 (17)
O20.32653 (6)1.14816 (8)0.61694 (4)0.01926 (18)
H1O20.3790 (16)1.119 (2)0.6311 (11)0.051 (6)*
O30.32914 (5)0.88335 (8)1.01826 (4)0.01920 (18)
O40.29967 (5)0.71610 (8)1.11552 (4)0.01747 (17)
O50.13085 (6)0.63448 (8)1.14433 (4)0.01937 (18)
N10.06135 (6)0.96981 (9)0.86248 (5)0.01526 (18)
H1N10.1150 (12)0.9362 (16)0.8709 (9)0.029 (4)*
N20.01401 (6)0.94312 (9)0.90309 (5)0.01538 (18)
C10.12442 (7)1.07047 (10)0.76129 (5)0.0147 (2)
C20.11500 (7)1.16838 (11)0.71558 (6)0.0165 (2)
H2A0.06271.21780.71780.020*
C30.18213 (8)1.19281 (11)0.66718 (6)0.0167 (2)
H3A0.17471.25780.63690.020*
C40.26122 (7)1.11954 (10)0.66390 (5)0.0155 (2)
C50.26994 (7)1.01888 (11)0.70742 (6)0.0163 (2)
H5A0.32120.96780.70390.020*
C60.20211 (7)0.99504 (10)0.75593 (6)0.0162 (2)
H6A0.20850.92830.78510.019*
C70.04843 (7)1.05222 (10)0.81117 (5)0.0142 (2)
C80.00007 (7)0.87131 (10)0.95390 (6)0.0155 (2)
H8A0.05920.84190.96300.019*
C90.07833 (7)0.83586 (10)0.99769 (5)0.0144 (2)
C100.16646 (7)0.88419 (10)0.98592 (5)0.0154 (2)
H10A0.17560.94210.95170.019*
C110.24005 (7)0.84492 (10)1.02576 (5)0.0153 (2)
C120.22580 (7)0.75942 (10)1.07816 (5)0.0152 (2)
C130.13721 (7)0.71439 (10)1.09113 (5)0.0153 (2)
C140.06307 (7)0.75202 (10)1.05023 (5)0.0155 (2)
H14A0.00400.72131.05800.019*
C150.34575 (8)0.97270 (12)0.96645 (6)0.0208 (2)
H15A0.40920.99820.96820.031*
H15B0.30641.04220.97390.031*
H15C0.33280.93790.92240.031*
C160.33986 (12)0.80230 (13)1.16153 (8)0.0366 (4)
H16A0.40440.78421.16720.055*
H16B0.30930.79731.20500.055*
H16C0.33300.88341.14330.055*
C170.04118 (8)0.58866 (12)1.16066 (6)0.0221 (2)
H17A0.04500.53781.20060.033*
H17B0.01810.54141.12300.033*
H17C0.00010.65601.16940.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0125 (3)0.0233 (4)0.0190 (4)0.0017 (3)0.0000 (3)0.0030 (3)
O20.0142 (4)0.0264 (4)0.0172 (4)0.0013 (3)0.0031 (3)0.0046 (3)
O30.0124 (4)0.0266 (4)0.0186 (4)0.0017 (3)0.0006 (3)0.0051 (3)
O40.0140 (3)0.0186 (4)0.0197 (4)0.0021 (3)0.0051 (3)0.0012 (3)
O50.0163 (4)0.0222 (4)0.0197 (4)0.0015 (3)0.0027 (3)0.0078 (3)
N10.0108 (4)0.0191 (4)0.0158 (4)0.0002 (3)0.0020 (3)0.0032 (3)
N20.0124 (4)0.0185 (4)0.0152 (4)0.0024 (3)0.0027 (3)0.0001 (3)
C10.0121 (4)0.0184 (5)0.0135 (4)0.0012 (4)0.0003 (3)0.0009 (4)
C20.0139 (5)0.0193 (5)0.0164 (5)0.0026 (4)0.0002 (4)0.0015 (4)
C30.0164 (5)0.0187 (5)0.0150 (5)0.0016 (4)0.0001 (4)0.0033 (4)
C40.0134 (4)0.0197 (5)0.0134 (4)0.0016 (4)0.0004 (4)0.0000 (4)
C50.0132 (4)0.0180 (5)0.0176 (5)0.0014 (4)0.0002 (4)0.0012 (4)
C60.0147 (5)0.0170 (5)0.0167 (5)0.0003 (4)0.0003 (4)0.0031 (4)
C70.0124 (4)0.0167 (5)0.0134 (4)0.0021 (4)0.0011 (3)0.0001 (4)
C80.0132 (4)0.0177 (5)0.0157 (5)0.0007 (4)0.0011 (4)0.0008 (4)
C90.0135 (4)0.0157 (5)0.0138 (4)0.0017 (4)0.0009 (3)0.0015 (4)
C100.0142 (5)0.0182 (5)0.0139 (4)0.0002 (4)0.0003 (4)0.0008 (4)
C110.0124 (4)0.0184 (5)0.0152 (4)0.0002 (4)0.0008 (4)0.0010 (4)
C120.0132 (4)0.0173 (5)0.0151 (4)0.0028 (4)0.0016 (3)0.0001 (4)
C130.0160 (5)0.0163 (5)0.0136 (4)0.0010 (4)0.0010 (4)0.0005 (4)
C140.0132 (4)0.0172 (5)0.0160 (5)0.0000 (4)0.0006 (4)0.0002 (4)
C150.0168 (5)0.0258 (6)0.0199 (5)0.0023 (4)0.0012 (4)0.0046 (4)
C160.0504 (9)0.0268 (7)0.0326 (7)0.0135 (6)0.0256 (7)0.0118 (6)
C170.0182 (5)0.0249 (6)0.0233 (6)0.0036 (4)0.0010 (4)0.0079 (5)
Geometric parameters (Å, º) top
O1—C71.2358 (13)C5—H5A0.9300
O2—C41.3542 (13)C6—H6A0.9300
O2—H1O20.87 (2)C8—C91.4727 (14)
O3—C111.3630 (13)C8—H8A0.9300
O3—C151.4270 (14)C9—C141.3939 (15)
O4—C121.3780 (12)C9—C101.3986 (15)
O4—C161.4262 (15)C10—C111.3871 (15)
O5—C131.3611 (13)C10—H10A0.9300
O5—C171.4262 (14)C11—C121.4016 (15)
N1—C71.3608 (14)C12—C131.3957 (15)
N1—N21.3797 (12)C13—C141.3995 (15)
N1—H1N10.874 (18)C14—H14A0.9300
N2—C81.2821 (15)C15—H15A0.9600
C1—C61.3971 (15)C15—H15B0.9600
C1—C21.4004 (15)C15—H15C0.9600
C1—C71.4831 (14)C16—H16A0.9600
C2—C31.3820 (15)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C3—C41.3974 (15)C17—H17A0.9600
C3—H3A0.9300C17—H17B0.9600
C4—C51.3959 (15)C17—H17C0.9600
C5—C61.3894 (15)
C4—O2—H1O2108.0 (14)C10—C9—C8120.44 (10)
C11—O3—C15116.49 (9)C11—C10—C9119.34 (10)
C12—O4—C16115.09 (9)C11—C10—H10A120.3
C13—O5—C17117.23 (9)C9—C10—H10A120.3
C7—N1—N2117.12 (9)O3—C11—C10124.72 (10)
C7—N1—H1N1122.6 (11)O3—C11—C12115.01 (9)
N2—N1—H1N1120.2 (11)C10—C11—C12120.26 (10)
C8—N2—N1116.75 (9)O4—C12—C13119.62 (10)
C6—C1—C2118.72 (10)O4—C12—C11120.16 (9)
C6—C1—C7124.48 (10)C13—C12—C11120.17 (10)
C2—C1—C7116.77 (10)O5—C13—C12115.27 (9)
C3—C2—C1121.09 (10)O5—C13—C14125.00 (10)
C3—C2—H2A119.5C12—C13—C14119.73 (10)
C1—C2—H2A119.5C9—C14—C13119.54 (10)
C2—C3—C4119.73 (10)C9—C14—H14A120.2
C2—C3—H3A120.1C13—C14—H14A120.2
C4—C3—H3A120.1O3—C15—H15A109.5
O2—C4—C5122.16 (10)O3—C15—H15B109.5
O2—C4—C3118.03 (10)H15A—C15—H15B109.5
C5—C4—C3119.79 (10)O3—C15—H15C109.5
C6—C5—C4120.01 (10)H15A—C15—H15C109.5
C6—C5—H5A120.0H15B—C15—H15C109.5
C4—C5—H5A120.0O4—C16—H16A109.5
C5—C6—C1120.57 (10)O4—C16—H16B109.5
C5—C6—H6A119.7H16A—C16—H16B109.5
C1—C6—H6A119.7O4—C16—H16C109.5
O1—C7—N1121.20 (10)H16A—C16—H16C109.5
O1—C7—C1120.61 (10)H16B—C16—H16C109.5
N1—C7—C1118.18 (9)O5—C17—H17A109.5
N2—C8—C9119.29 (10)O5—C17—H17B109.5
N2—C8—H8A120.4H17A—C17—H17B109.5
C9—C8—H8A120.4O5—C17—H17C109.5
C14—C9—C10120.90 (10)H17A—C17—H17C109.5
C14—C9—C8118.65 (10)H17B—C17—H17C109.5
C7—N1—N2—C8175.78 (10)C8—C9—C10—C11176.91 (10)
C6—C1—C2—C31.83 (17)C15—O3—C11—C101.62 (16)
C7—C1—C2—C3179.98 (10)C15—O3—C11—C12178.52 (10)
C1—C2—C3—C40.52 (17)C9—C10—C11—O3178.62 (10)
C2—C3—C4—O2178.38 (10)C9—C10—C11—C121.23 (16)
C2—C3—C4—C52.91 (17)C16—O4—C12—C13111.02 (14)
O2—C4—C5—C6178.41 (10)C16—O4—C12—C1171.28 (15)
C3—C4—C5—C62.94 (16)O3—C11—C12—O42.99 (15)
C4—C5—C6—C10.57 (17)C10—C11—C12—O4176.88 (10)
C2—C1—C6—C51.80 (16)O3—C11—C12—C13179.33 (10)
C7—C1—C6—C5179.80 (10)C10—C11—C12—C130.80 (17)
N2—N1—C7—O16.63 (15)C17—O5—C13—C12178.33 (10)
N2—N1—C7—C1172.15 (9)C17—O5—C13—C141.93 (16)
C6—C1—C7—O1167.40 (11)O4—C12—C13—O54.06 (15)
C2—C1—C7—O110.63 (15)C11—C12—C13—O5178.24 (10)
C6—C1—C7—N111.39 (16)O4—C12—C13—C14175.69 (10)
C2—C1—C7—N1170.58 (10)C11—C12—C13—C142.00 (16)
N1—N2—C8—C9177.83 (9)C10—C9—C14—C130.90 (16)
N2—C8—C9—C14176.20 (10)C8—C9—C14—C13178.12 (10)
N2—C8—C9—C102.83 (16)O5—C13—C14—C9179.12 (10)
C14—C9—C10—C112.10 (16)C12—C13—C14—C91.15 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.87 (2)1.87 (2)2.6646 (11)152 (2)
O2—H1O2···N2i0.87 (2)2.56 (2)3.2381 (13)136.2 (18)
N1—H1N1···O4ii0.874 (17)2.088 (17)2.8891 (12)152.0 (16)
C6—H6A···O4ii0.932.513.4116 (14)165
C16—H16B···Cg1iii0.962.633.4572 (17)145
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1/2, y+3/2, z+2; (iii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC17H18N2O5
Mr330.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)297
a, b, c (Å)14.4623 (8), 10.9202 (6), 19.5592 (10)
V3)3089.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.39 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
20210, 4500, 3777
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.03
No. of reflections4500
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.87 (2)1.87 (2)2.6646 (11)152 (2)
O2—H1O2···N2i0.87 (2)2.56 (2)3.2381 (13)136.2 (18)
N1—H1N1···O4ii0.874 (17)2.088 (17)2.8891 (12)152.0 (16)
C6—H6A···O4ii0.932.513.4116 (14)165
C16—H16B···Cg1iii0.962.633.4572 (17)145
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1/2, y+3/2, z+2; (iii) x, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

JH thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University through the Crystal Mat­erials Research Unit and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. (2011). Acta Cryst. E67, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds