metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1581-m1582

[(4E,11E)-5,7,12,14-Tetra­benzyl-7,14-di­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene]copper(II) bis­(per­chlorate)

aDepartment of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 October 2011; accepted 15 October 2011; online 22 October 2011)

The complete cation in the title compound, [Cu(C40H48N4)](ClO4)2, is generated by the operation of a crystallographic centre of inversion. The CuII ion exists in a tetra­gonally distorted trans-N4O2 coordination geometry defined by the four N atoms of the macrocyclic ligand and two weakly bound perchlorate-O atoms from two anions. The N—H atoms form intra­molecular N—H⋯O(perchlorate) hydrogen bonds. Disorder was resolved in the –CH2–NH– portion of the macrocycle with the major component having a site-occupancy factor of 0.570 (6).

Related literature

For background to the synthesis, characterization, kinetic studies and biological activities of 14-membered methyl-substituted tetra­aza­macrocyclic ligands, their N-substituted derivatives and their metal complexes, see: Hazari et al. (2008[Hazari, S. K. S., Roy, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1-8.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C40H48N4)](ClO4)2

  • Mr = 847.26

  • Monoclinic, P 21 /n

  • a = 10.1170 (3) Å

  • b = 16.6017 (4) Å

  • c = 11.9910 (3) Å

  • β = 108.818 (3)°

  • V = 1906.35 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.792, Tmax = 1.000

  • 9806 measured reflections

  • 4253 independent reflections

  • 3707 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.145

  • S = 1.08

  • 4253 reflections

  • 251 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Selected bond lengths (Å)

Cu—N1 2.032 (4)
Cu—N2 1.977 (2)
Cu—O1 2.662 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.39 2.940 (5) 121
N1′—H1′⋯O2 0.88 2.29 3.104 (4) 153
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title complex, (I), was investigated in continuation of studies of the synthesis, characterization and biological activities of methyl substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008).

The structure of (I), Fig. 1, features a tetragonally distorted N4O2 donor set about a CuII atom, Table 1. The N-donor atoms are derived from the (4E,11E)-5,7,12,14-tetrabenzyl-7,14-dimethyl- 1,4,8,11-tetraazacyclotetradeca-4,11-diene macrocyclic ligand, and the O-donors are derived from two perchlorate anions. The complex is centrosymmetric. A C-meso, N-meso configuration is found in (I). With reference to the six-membered chelate ring, the benzyl and methyl groups equatorially and axially orientated, respectively. The dihedral angle formed between the benzene rings is 44.22 (16) Å. Each N—H atom of the disordered —CH2—NH— residue forms an intramolecular N—H···O hydrogen bond with a perchlorate-O atom, Table 2, i.e. to either side of the CuN4 plane. The competition between the formation of these alternate hydrogen bonds provides a rationale for the observed disorder.

Related literature top

For background to the synthesis, characterization, kinetic studies and biological activities of 14-membered methyl-substituted tetraazamacrocyclic ligands, their N-substituted derivatives and their metal complexes, see: Hazari et al. (2008).

Experimental top

The macrocyclic ligand as its hydroperchloric acid salt (0.783 g, 1.0 mmol) was suspended in methanol (20 ml). Copper(II) perchlorate hexahydrate (0.370 g, 1.0 mmol) was dissolved in methanol (30 ml) and then was mixed with the suspension of the ligand salt. The mixture was refluxed for 3 h and a clear violet solution evolved. The solution was filtered and kept at room temperature. After 24 h, violet crystals of the complex were observed. The crystals were separated by filtration, washed with dry ethanol, followed by diethylether and dried in a vacuum desiccator over silica gel. M.pt. 510–512 K. Yield 45%. Anal. Calc. for [Cu(C40H48N4)](ClO4)2 C, 56.77; H, 5.56; N, 6.62; Cu, 7.51%. Found: C, 56.56; H, 5.53; N, 6.75; Cu, 7.35%. FT—IR (KBr, cm-1) 3220 ν(N—H), 3028 ν(Ar—H), 2980 ν(C—H), 1650 ν(CN), 1375 ν(CH3), 1185 ν(C—C), 1126 ν(ClO4), 710 ν(ArC—H)), 488 ν(Cu—N). The light-purple prisms were prepared by slow evaporation of a methanol solution of the complex.

Refinement top

One portion of the macrocycle, i.e. the –CH2–NH– portion, is disordered over two positions, with the major component having a site occupancy factor = 0.570 (6). The pair of Cu—N distances were tightly restrained to within 0.005 Å of each other, as were the C—N and Cdisordered—Cordered distances. The H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(N,C). The maximum and minimum residual electron density peaks of 0.64 and 1.08 e Å-3, respectively, were located 1.00 Å and 0.94 Å from the O4 and Cu atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. Only the major component of the disordered residue is shown. Unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).
[(4E,11E)-5,7,12,14-Tetrabenzyl-7,14-dimethyl- 1,4,8,11-tetraazacyclotetradeca-4,11-diene]copper(II) bis(perchlorate) top
Crystal data top
[Cu(C40H48N4)](ClO4)2F(000) = 886
Mr = 847.26Dx = 1.476 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4647 reflections
a = 10.1170 (3) Åθ = 2.3–29.3°
b = 16.6017 (4) ŵ = 0.77 mm1
c = 11.9910 (3) ÅT = 100 K
β = 108.818 (3)°Prism, light-purple
V = 1906.35 (9) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
4253 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3707 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scanh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2116
Tmin = 0.792, Tmax = 1.000l = 1515
9806 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0495P)2 + 4.3222P]
where P = (Fo2 + 2Fc2)/3
4253 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.64 e Å3
15 restraintsΔρmin = 1.08 e Å3
Crystal data top
[Cu(C40H48N4)](ClO4)2V = 1906.35 (9) Å3
Mr = 847.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1170 (3) ŵ = 0.77 mm1
b = 16.6017 (4) ÅT = 100 K
c = 11.9910 (3) Å0.30 × 0.25 × 0.20 mm
β = 108.818 (3)°
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
4253 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3707 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 1.000Rint = 0.024
9806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05915 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.08Δρmax = 0.64 e Å3
4253 reflectionsΔρmin = 1.08 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.50000.50000.50000.0368 (2)
Cl10.85496 (8)0.59569 (5)0.64594 (7)0.0320 (2)
O10.7221 (2)0.59629 (15)0.5522 (2)0.0349 (6)
O20.8616 (3)0.52613 (18)0.7184 (3)0.0520 (8)
O30.9641 (3)0.5963 (2)0.5963 (3)0.0660 (10)
O40.8647 (3)0.66693 (18)0.7171 (2)0.0492 (7)
N10.4748 (5)0.4782 (3)0.6587 (3)0.0245 (10)0.570 (6)
H10.40190.44620.64450.029*0.570 (6)
N20.6240 (3)0.40479 (15)0.5342 (2)0.0239 (5)
C10.6015 (5)0.4282 (3)0.7295 (4)0.0277 (11)0.570 (6)
H1A0.68450.46310.76100.033*0.570 (6)
H1B0.58250.40110.79640.033*0.570 (6)
C20.6264 (3)0.36629 (19)0.6456 (3)0.0261 (7)
H2A0.71810.34010.68250.031*0.570 (6)
H2B0.55330.32420.62940.031*0.570 (6)
H2C0.71950.37260.70580.031*0.430 (6)
H2D0.60560.30810.63340.031*0.430 (6)
C30.7012 (3)0.3815 (2)0.4734 (3)0.0257 (6)
C40.7948 (3)0.3080 (2)0.4994 (3)0.0282 (7)
H4A0.80720.28830.58000.034*
H4B0.88780.32210.49430.034*
C50.7277 (3)0.2425 (2)0.4096 (3)0.0281 (7)
C60.6296 (4)0.1915 (2)0.4294 (3)0.0352 (8)
H60.60830.19550.50080.042*
C70.5617 (4)0.1344 (2)0.3456 (4)0.0399 (9)
H70.49420.09990.36010.048*
C80.5919 (4)0.1277 (2)0.2413 (3)0.0379 (8)
H80.54450.08920.18360.045*
C90.6922 (4)0.1776 (2)0.2218 (3)0.0374 (8)
H90.71440.17280.15100.045*
C100.7604 (3)0.2349 (2)0.3059 (3)0.0309 (7)
H100.82940.26870.29230.037*
C110.7003 (4)0.4281 (2)0.3652 (3)0.0316 (7)
H11A0.75180.39640.32260.038*
H11B0.75270.47890.39110.038*
C120.5570 (4)0.4493 (2)0.2784 (3)0.0303 (7)
C130.5729 (4)0.4799 (2)0.1621 (3)0.0354 (8)
H13A0.47910.49370.10740.042*
H13B0.62880.53010.17840.042*
C140.4581 (3)0.3778 (3)0.2546 (3)0.0391 (9)
H14A0.36680.39390.20040.059*
H14B0.44770.35910.32880.059*
H14C0.49620.33410.21910.059*
C150.6410 (4)0.42125 (19)0.1011 (3)0.0280 (7)
C160.5637 (3)0.36046 (19)0.0285 (3)0.0268 (7)
H160.46640.35610.01630.032*
C170.6273 (3)0.3066 (2)0.0260 (3)0.0287 (7)
H170.57360.26500.07420.034*
C180.7686 (4)0.3126 (2)0.0109 (3)0.0316 (7)
H180.81200.27560.04850.038*
C190.8455 (4)0.3731 (2)0.0598 (3)0.0366 (8)
H190.94210.37840.06980.044*
C200.7815 (3)0.42676 (17)0.1166 (2)0.0331 (8)
H200.83580.46740.16650.040*
N1'0.5452 (3)0.49931 (17)0.6741 (2)0.0245 (10)0.43
H1'0.63320.51190.71030.029*0.430 (6)
C1'0.5178 (3)0.40711 (17)0.6846 (2)0.0277 (11)0.43
H1'10.52760.39250.76700.033*0.430 (6)
H1'20.42300.39220.63330.033*0.430 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0564 (4)0.0281 (3)0.0199 (3)0.0258 (3)0.0039 (3)0.0029 (2)
Cl10.0177 (4)0.0351 (4)0.0413 (4)0.0034 (3)0.0068 (3)0.0122 (4)
O10.0232 (12)0.0389 (14)0.0379 (13)0.0015 (10)0.0034 (10)0.0016 (11)
O20.0465 (17)0.0398 (15)0.0623 (19)0.0023 (13)0.0074 (14)0.0250 (14)
O30.0303 (15)0.092 (3)0.087 (2)0.0031 (16)0.0339 (16)0.013 (2)
O40.0510 (17)0.0442 (16)0.0411 (15)0.0104 (13)0.0008 (13)0.0021 (13)
N10.023 (2)0.022 (2)0.0222 (18)0.0091 (17)0.0004 (19)0.0010 (15)
N20.0225 (12)0.0202 (12)0.0252 (12)0.0015 (10)0.0024 (10)0.0019 (10)
C10.025 (2)0.034 (3)0.026 (2)0.013 (2)0.0118 (18)0.012 (2)
C20.0249 (15)0.0244 (15)0.0294 (16)0.0057 (12)0.0091 (13)0.0081 (13)
C30.0182 (14)0.0273 (16)0.0282 (15)0.0013 (12)0.0030 (12)0.0037 (13)
C40.0182 (14)0.0398 (18)0.0266 (15)0.0081 (13)0.0075 (12)0.0064 (14)
C50.0245 (15)0.0303 (17)0.0304 (16)0.0158 (13)0.0100 (13)0.0096 (14)
C60.0354 (19)0.0325 (18)0.0418 (19)0.0103 (15)0.0183 (16)0.0068 (16)
C70.038 (2)0.0305 (18)0.054 (2)0.0072 (15)0.0194 (18)0.0029 (17)
C80.039 (2)0.0277 (17)0.042 (2)0.0112 (15)0.0063 (16)0.0020 (16)
C90.042 (2)0.039 (2)0.0307 (17)0.0218 (16)0.0109 (15)0.0106 (16)
C100.0245 (16)0.0341 (18)0.0361 (17)0.0140 (13)0.0127 (13)0.0116 (15)
C110.0306 (17)0.0320 (17)0.0278 (16)0.0083 (14)0.0033 (13)0.0067 (14)
C120.0353 (18)0.0277 (16)0.0266 (15)0.0127 (14)0.0081 (13)0.0019 (13)
C130.051 (2)0.0247 (16)0.0234 (16)0.0058 (15)0.0021 (15)0.0004 (13)
C140.0204 (16)0.066 (3)0.0304 (17)0.0019 (16)0.0080 (13)0.0073 (18)
C150.0372 (18)0.0224 (15)0.0204 (14)0.0005 (13)0.0035 (13)0.0043 (12)
C160.0258 (15)0.0268 (16)0.0243 (15)0.0018 (13)0.0030 (12)0.0009 (13)
C170.0320 (17)0.0268 (16)0.0258 (15)0.0046 (13)0.0072 (13)0.0018 (13)
C180.0318 (17)0.0381 (19)0.0268 (16)0.0006 (15)0.0120 (14)0.0002 (15)
C190.0298 (17)0.051 (2)0.0269 (16)0.0090 (16)0.0058 (14)0.0010 (16)
C200.0376 (19)0.0343 (18)0.0235 (15)0.0129 (15)0.0046 (14)0.0011 (14)
N1'0.023 (2)0.022 (2)0.0222 (18)0.0091 (17)0.0004 (19)0.0010 (15)
C1'0.025 (2)0.034 (3)0.026 (2)0.013 (2)0.0118 (18)0.012 (2)
Geometric parameters (Å, º) top
Cu—N12.032 (4)C7—H70.9500
Cu—N21.977 (2)C8—C91.386 (6)
Cu—N2i1.977 (2)C8—H80.9500
Cu—N1'i1.988 (2)C9—C101.396 (5)
Cu—N1'1.988 (2)C9—H90.9500
Cu—N1i2.032 (4)C10—H100.9500
Cu—O1i2.662 (2)C11—C121.528 (5)
Cu—O12.662 (2)C11—H11A0.9900
Cl1—O31.413 (3)C11—H11B0.9900
Cl1—O21.433 (3)C12—N1i1.510 (5)
Cl1—O41.443 (3)C12—C141.519 (5)
Cl1—O11.447 (2)C12—C131.541 (5)
N1—C12i1.510 (5)C12—N1'i1.582 (4)
N1—C11.534 (4)C13—C151.511 (5)
N1—H10.8800C13—H13A0.9900
N2—C31.287 (4)C13—H13B0.9900
N2—C21.475 (4)C14—H14A0.9800
C1—C21.515 (5)C14—H14B0.9800
C1—H1A0.9900C14—H14C0.9800
C1—H1B0.9900C15—C201.376 (4)
C2—C1'1.489 (4)C15—C161.396 (4)
C2—H2A0.9900C16—C171.383 (5)
C2—H2B0.9900C16—H160.9500
C2—H2C0.9900C17—C181.385 (5)
C2—H2D0.9900C17—H170.9500
C3—C41.514 (4)C18—C191.381 (5)
C3—C111.509 (4)C18—H180.9500
C4—C51.527 (5)C19—C201.400 (5)
C4—H4A0.9900C19—H190.9500
C4—H4B0.9900C20—H200.9500
C5—C61.383 (5)N1'—C1'1.5679
C5—C101.392 (4)N1'—C12i1.582 (4)
C6—C71.390 (5)N1'—H1'0.8800
C6—H60.9500C1'—H1'10.9900
C7—C81.385 (5)C1'—H1'20.9900
O1—Cu—N1103.76 (15)H4A—C4—H4B108.3
O1—Cu—N290.01 (9)C6—C5—C10119.3 (3)
N2—Cu—N2i180C6—C5—C4119.7 (3)
N2—Cu—N1'i97.92 (11)C10—C5—C4121.0 (3)
N2i—Cu—N1'i82.08 (11)C5—C6—C7120.5 (3)
N2—Cu—N1'82.08 (11)C5—C6—H6119.7
N2i—Cu—N1'97.92 (11)C7—C6—H6119.7
N1'i—Cu—N1'180C8—C7—C6120.4 (4)
N2—Cu—N1i94.20 (14)C8—C7—H7119.8
N2i—Cu—N1i85.80 (14)C6—C7—H7119.8
N1'i—Cu—N1i21.80 (14)C7—C8—C9119.3 (4)
N1'—Cu—N1i158.20 (15)C7—C8—H8120.3
N1—Cu—N285.80 (14)C9—C8—H8120.3
N2i—Cu—N194.20 (14)C10—C9—C8120.3 (3)
N1'i—Cu—N1158.20 (15)C10—C9—H9119.9
N1'—Cu—N121.80 (14)C8—C9—H9119.9
N1i—Cu—N1180C9—C10—C5120.1 (3)
N2—Cu—O1i89.99 (9)C9—C10—H10119.9
N2i—Cu—O1i90.01 (9)C5—C10—H10119.9
N1'i—Cu—O1i82.27 (10)C3—C11—C12116.4 (3)
N1'—Cu—O1i97.73 (10)C3—C11—H11A108.2
N1i—Cu—O1i103.76 (15)C12—C11—H11A108.2
N1—Cu—O1i76.24 (15)C3—C11—H11B108.2
N2i—Cu—O189.99 (9)C12—C11—H11B108.2
N1'i—Cu—O197.73 (10)H11A—C11—H11B107.3
N1'—Cu—O182.27 (10)N1i—C12—C14118.9 (3)
N1i—Cu—O176.24 (15)N1i—C12—C1198.7 (3)
O1i—Cu—O1180.0C14—C12—C11111.8 (3)
O3—Cl1—O2111.7 (2)N1i—C12—C13106.9 (3)
O3—Cl1—O4109.3 (2)C14—C12—C13110.0 (3)
O2—Cl1—O4108.75 (18)C11—C12—C13109.8 (3)
O3—Cl1—O1109.20 (19)C14—C12—N1'i91.3 (3)
O2—Cl1—O1109.04 (16)C11—C12—N1'i117.8 (3)
O4—Cl1—O1108.80 (16)C13—C12—N1'i114.8 (3)
Cl1—O1—Cu132.88 (15)C15—C13—C12115.0 (3)
C12i—N1—C1115.5 (3)C15—C13—H13A108.5
C12i—N1—Cu115.9 (3)C12—C13—H13A108.5
C1—N1—Cu106.3 (3)C15—C13—H13B108.5
C12i—N1—H1106.1C12—C13—H13B108.5
C1—N1—H1106.1H13A—C13—H13B107.5
Cu—N1—H1106.1C12—C14—H14A109.5
C3—N2—C2123.2 (3)C12—C14—H14B109.5
C3—N2—Cu125.7 (2)H14A—C14—H14B109.5
C2—N2—Cu110.97 (19)C12—C14—H14C109.5
C2—C1—N1106.7 (3)H14A—C14—H14C109.5
C2—C1—H1A110.4H14B—C14—H14C109.5
N1—C1—H1A110.4C20—C15—C16118.6 (3)
C2—C1—H1B110.4C20—C15—C13120.3 (3)
N1—C1—H1B110.4C16—C15—C13121.1 (3)
H1A—C1—H1B108.6C17—C16—C15120.6 (3)
N2—C2—C1'106.8 (2)C17—C16—H16119.7
N2—C2—C1110.5 (3)C15—C16—H16119.7
N2—C2—H2A109.5C16—C17—C18120.6 (3)
C1'—C2—H2A137.7C16—C17—H17119.7
C1—C2—H2A109.5C18—C17—H17119.7
N2—C2—H2B109.5C19—C18—C17119.1 (3)
C1'—C2—H2B78.6C19—C18—H18120.5
C1—C2—H2B109.5C17—C18—H18120.5
H2A—C2—H2B108.1C18—C19—C20120.3 (3)
N2—C2—H2C110.4C18—C19—H19119.9
C1'—C2—H2C110.4C20—C19—H19119.9
C1—C2—H2C76.6C15—C20—C19120.7 (3)
H2B—C2—H2C133.9C15—C20—H20119.6
N2—C2—H2D110.4C19—C20—H20119.6
C1'—C2—H2D110.4C1'—N1'—C12i110.16 (17)
C1—C2—H2D133.4C1'—N1'—Cu95.92 (8)
H2A—C2—H2D76.1C12i—N1'—Cu114.78 (19)
H2C—C2—H2D108.6C1'—N1'—H1'111.7
N2—C3—C4125.4 (3)C12i—N1'—H1'111.7
N2—C3—C11119.8 (3)Cu—N1'—H1'111.7
C4—C3—C11114.8 (3)C2—C1'—N1'104.57 (17)
C3—C4—C5108.8 (2)C2—C1'—H1'1110.8
C3—C4—H4A109.9N1'—C1'—H1'1110.8
C5—C4—H4A109.9C2—C1'—H1'2110.8
C3—C4—H4B109.9N1'—C1'—H1'2110.8
C5—C4—H4B109.9H1'1—C1'—H1'2108.9
O3—Cl1—O1—Cu124.9 (2)C3—C4—C5—C685.3 (4)
O2—Cl1—O1—Cu2.5 (3)C3—C4—C5—C1092.6 (3)
O4—Cl1—O1—Cu115.9 (2)C10—C5—C6—C71.5 (5)
N2—Cu—O1—Cl143.1 (2)C4—C5—C6—C7176.4 (3)
N2i—Cu—O1—Cl1136.9 (2)C5—C6—C7—C80.3 (5)
N1'i—Cu—O1—Cl1141.1 (2)C6—C7—C8—C90.9 (5)
N1'—Cu—O1—Cl138.9 (2)C7—C8—C9—C100.9 (5)
N1i—Cu—O1—Cl1137.4 (2)C8—C9—C10—C50.3 (5)
N1—Cu—O1—Cl142.6 (2)C6—C5—C10—C91.5 (5)
N2—Cu—N1—C12i151.7 (3)C4—C5—C10—C9176.4 (3)
N2i—Cu—N1—C12i28.3 (3)N2—C3—C11—C1248.0 (4)
N1'i—Cu—N1—C12i107.5 (5)C4—C3—C11—C12130.8 (3)
N1'—Cu—N1—C12i72.5 (5)C3—C11—C12—N1i80.6 (4)
O1i—Cu—N1—C12i117.3 (3)C3—C11—C12—C1445.5 (4)
O1—Cu—N1—C12i62.7 (3)C3—C11—C12—C13167.9 (3)
N2—Cu—N1—C121.9 (3)C3—C11—C12—N1'i58.3 (4)
N2i—Cu—N1—C1158.1 (3)N1i—C12—C13—C15164.9 (3)
N1'i—Cu—N1—C1122.7 (4)C14—C12—C13—C1564.7 (4)
N1'—Cu—N1—C157.3 (4)C11—C12—C13—C1558.7 (4)
O1i—Cu—N1—C1112.9 (3)N1'i—C12—C13—C15165.9 (3)
O1—Cu—N1—C167.1 (3)C12—C13—C15—C2096.7 (4)
N1'i—Cu—N2—C330.0 (3)C12—C13—C15—C1683.1 (4)
N1'—Cu—N2—C3150.0 (3)C20—C15—C16—C170.5 (5)
N1i—Cu—N2—C38.4 (3)C13—C15—C16—C17179.3 (3)
N1—Cu—N2—C3171.6 (3)C15—C16—C17—C180.9 (5)
O1i—Cu—N2—C3112.2 (3)C16—C17—C18—C190.2 (5)
O1—Cu—N2—C367.8 (3)C17—C18—C19—C201.0 (5)
N1'i—Cu—N2—C2154.7 (2)C16—C15—C20—C190.7 (4)
N1'—Cu—N2—C225.3 (2)C13—C15—C20—C19179.5 (3)
N1i—Cu—N2—C2176.3 (2)C18—C19—C20—C151.5 (5)
N1—Cu—N2—C23.7 (2)N2—Cu—N1'—C1'47.47 (8)
O1i—Cu—N2—C272.5 (2)N2i—Cu—N1'—C1'132.53 (8)
O1—Cu—N2—C2107.5 (2)N1i—Cu—N1'—C1'128.9 (4)
C12i—N1—C1—C2172.4 (4)N1—Cu—N1'—C1'51.1 (4)
Cu—N1—C1—C242.3 (4)O1i—Cu—N1'—C1'41.44 (6)
C3—N2—C2—C1'176.9 (3)O1—Cu—N1'—C1'138.56 (6)
Cu—N2—C2—C1'7.7 (3)N2—Cu—N1'—C12i162.9 (2)
C3—N2—C2—C1145.9 (3)N2i—Cu—N1'—C12i17.1 (2)
Cu—N2—C2—C129.6 (3)N1i—Cu—N1'—C12i115.6 (4)
N1—C1—C2—N247.6 (5)N1—Cu—N1'—C12i64.4 (4)
N1—C1—C2—C1'42.7 (3)O1i—Cu—N1'—C12i74.0 (2)
C2—N2—C3—C45.9 (5)O1—Cu—N1'—C12i106.0 (2)
Cu—N2—C3—C4179.3 (2)N2—C2—C1'—N1'48.2 (2)
C2—N2—C3—C11175.4 (3)C1—C2—C1'—N1'53.7 (4)
Cu—N2—C3—C110.6 (4)C12i—N1'—C1'—C2176.1 (3)
N2—C3—C4—C5106.0 (4)Cu—N1'—C1'—C264.78 (16)
C11—C3—C4—C572.8 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.392.940 (5)121
N1—H1···O20.882.293.104 (4)153
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C40H48N4)](ClO4)2
Mr847.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.1170 (3), 16.6017 (4), 11.9910 (3)
β (°) 108.818 (3)
V3)1906.35 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.792, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9806, 4253, 3707
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.145, 1.08
No. of reflections4253
No. of parameters251
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 1.08

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu—N12.032 (4)Cu—O12.662 (2)
Cu—N21.977 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.392.940 (5)121
N1'—H1'···O20.882.293.104 (4)153
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: tapashir@yahoo.com.

Acknowledgements

The authors are grateful to the Bangladesh Ministry of Science, and Information and Communication Technology, Bangladesh, for awarding a research grant to TGR and to the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHazari, S. K. S., Roy, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1581-m1582
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds