organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-2-oxo­ethyl 4-methyl­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 October 2011; accepted 16 October 2011; online 22 October 2011)

In the title compound, C16H13ClO3, the dihedral angle between the benzene rings is 80.74 (8)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules to form C(11) chains propagating in [010].

Related literature

For a related structure and background references to phenacyl benzoates, see: Fun et al. (2011[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011). Acta Cryst. E67, o2854.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClO3

  • Mr = 288.71

  • Monoclinic, P 21 /c

  • a = 5.9132 (4) Å

  • b = 8.5044 (6) Å

  • c = 27.8767 (18) Å

  • β = 95.880 (1)°

  • V = 1394.49 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 297 K

  • 0.51 × 0.30 × 0.06 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.983

  • 21275 measured reflections

  • 4070 independent reflections

  • 2628 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.144

  • S = 1.05

  • 4070 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16C⋯O1i 0.96 2.46 3.383 (2) 162
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of phenacyl benzoates (Fun et al., 2011), we now report the synthesis and sturcture of the title compound, (I).

In the title compound (Fig. 1), the dihedral angle formed between the chloro-substituted (C1–C6) and the methyl-substituted (C10–C15) benzene rings is 80.74 (8)°. Bond lengths and angles are within the normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), intermolecular C16—H16C···O1 hydrogen bonds (Table 1) link the molecules to form chains along the b axis.

Related literature top

For a related structure and background references to phenacyl benzoates, see: Fun et al. (2011).

Experimental top

A mixture of 4-methylbenzoic acid (1.0 g, 0.0073 mol), potassium carbonate (1.10 g, 0.0080 mol) and 2-bromo-1-(4-chlorophenyl)ethanone (1.70 g, 0.0073 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of the title compound began to separate out. They were collected by filtration and recrystallized from ethanol to yield colourless plates of (I). Yield: 1.95 g, 92.8%. M. p: 405–406 K.

Refinement top

All H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 or 0.97 Å]. A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the showing the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-(4-Chlorophenyl)-2-oxoethyl 4-methylbenzoate top
Crystal data top
C16H13ClO3F(000) = 600
Mr = 288.71Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4428 reflections
a = 5.9132 (4) Åθ = 2.8–28.1°
b = 8.5044 (6) ŵ = 0.28 mm1
c = 27.8767 (18) ÅT = 297 K
β = 95.880 (1)°Plate, colourless
V = 1394.49 (16) Å30.51 × 0.30 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4070 independent reflections
Radiation source: fine-focus sealed tube2628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.871, Tmax = 0.983k = 1112
21275 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.3124P]
where P = (Fo2 + 2Fc2)/3
4070 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C16H13ClO3V = 1394.49 (16) Å3
Mr = 288.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9132 (4) ŵ = 0.28 mm1
b = 8.5044 (6) ÅT = 297 K
c = 27.8767 (18) Å0.51 × 0.30 × 0.06 mm
β = 95.880 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4070 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2628 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.983Rint = 0.027
21275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
4070 reflectionsΔρmin = 0.42 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.34410 (11)0.75388 (9)1.047675 (19)0.0935 (2)
O10.5306 (2)0.69016 (17)0.86404 (5)0.0739 (4)
O20.6246 (2)0.50027 (17)0.79276 (4)0.0612 (3)
O30.3791 (2)0.35541 (15)0.83027 (4)0.0643 (3)
C10.8059 (3)0.7539 (2)0.94970 (7)0.0569 (4)
H1A0.66460.80270.94530.068*
C20.9496 (4)0.7851 (2)0.99053 (7)0.0646 (5)
H2A0.90560.85391.01380.078*
C31.1586 (3)0.7138 (2)0.99658 (6)0.0589 (4)
C41.2267 (3)0.6099 (2)0.96302 (6)0.0598 (4)
H4A1.36840.56170.96780.072*
C51.0808 (3)0.5784 (2)0.92215 (6)0.0530 (4)
H5A1.12480.50830.89920.064*
C60.8693 (3)0.65035 (18)0.91501 (5)0.0462 (3)
C70.7093 (3)0.62133 (19)0.87099 (6)0.0487 (4)
C80.7785 (3)0.5032 (2)0.83558 (6)0.0579 (4)
H8A0.92980.52830.82730.070*
H8B0.78420.39970.85030.070*
C90.4256 (3)0.42441 (19)0.79494 (6)0.0484 (4)
C100.2774 (3)0.43770 (17)0.74889 (5)0.0438 (3)
C110.3350 (3)0.53418 (19)0.71169 (6)0.0496 (4)
H11A0.47300.58760.71460.060*
C120.1863 (3)0.55014 (19)0.67042 (6)0.0523 (4)
H12A0.22640.61440.64560.063*
C130.0210 (3)0.47287 (18)0.66499 (5)0.0482 (4)
C140.0734 (3)0.3726 (2)0.70156 (6)0.0531 (4)
H14A0.20930.31660.69820.064*
C150.0749 (3)0.3551 (2)0.74308 (6)0.0505 (4)
H15A0.03790.28730.76720.061*
C160.1878 (3)0.5006 (2)0.62043 (6)0.0604 (4)
H16A0.11020.48920.59200.091*
H16B0.24920.60490.62150.091*
H16C0.30890.42520.61970.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0873 (4)0.1316 (6)0.0578 (3)0.0190 (4)0.0114 (3)0.0225 (3)
O10.0601 (8)0.0737 (8)0.0831 (9)0.0200 (7)0.0156 (7)0.0148 (7)
O20.0487 (6)0.0890 (9)0.0452 (6)0.0116 (6)0.0008 (5)0.0060 (6)
O30.0746 (8)0.0656 (8)0.0513 (7)0.0104 (7)0.0006 (6)0.0087 (6)
C10.0517 (9)0.0576 (10)0.0617 (10)0.0007 (8)0.0071 (8)0.0088 (8)
C20.0714 (12)0.0683 (11)0.0555 (10)0.0103 (10)0.0130 (9)0.0163 (8)
C30.0615 (10)0.0705 (11)0.0438 (8)0.0165 (9)0.0011 (7)0.0034 (8)
C40.0510 (9)0.0736 (11)0.0526 (9)0.0014 (8)0.0044 (7)0.0015 (8)
C50.0518 (9)0.0582 (9)0.0480 (8)0.0033 (7)0.0011 (7)0.0065 (7)
C60.0466 (8)0.0462 (8)0.0457 (8)0.0043 (6)0.0039 (6)0.0001 (6)
C70.0452 (8)0.0482 (8)0.0518 (8)0.0021 (7)0.0002 (7)0.0017 (7)
C80.0470 (9)0.0747 (11)0.0503 (9)0.0005 (8)0.0042 (7)0.0102 (8)
C90.0497 (8)0.0485 (8)0.0469 (8)0.0006 (7)0.0046 (7)0.0075 (7)
C100.0455 (8)0.0443 (7)0.0418 (7)0.0007 (6)0.0059 (6)0.0054 (6)
C110.0483 (8)0.0488 (8)0.0522 (8)0.0082 (7)0.0071 (7)0.0001 (7)
C120.0617 (10)0.0492 (8)0.0467 (8)0.0037 (7)0.0081 (7)0.0046 (7)
C130.0532 (9)0.0478 (8)0.0431 (8)0.0039 (7)0.0030 (6)0.0083 (6)
C140.0483 (8)0.0598 (10)0.0508 (8)0.0109 (7)0.0040 (7)0.0052 (7)
C150.0518 (9)0.0555 (9)0.0449 (8)0.0097 (7)0.0082 (7)0.0004 (7)
C160.0638 (11)0.0631 (10)0.0524 (9)0.0048 (9)0.0030 (8)0.0047 (8)
Geometric parameters (Å, º) top
Cl1—C31.7400 (17)C8—H8A0.9700
O1—C71.2062 (19)C8—H8B0.9700
O2—C91.349 (2)C9—C101.483 (2)
O2—C81.4250 (18)C10—C151.383 (2)
O3—C91.203 (2)C10—C111.392 (2)
C1—C21.375 (2)C11—C121.381 (2)
C1—C61.387 (2)C11—H11A0.9300
C1—H1A0.9300C12—C131.385 (2)
C2—C31.371 (3)C12—H12A0.9300
C2—H2A0.9300C13—C141.388 (2)
C3—C41.377 (3)C13—C161.523 (2)
C4—C51.383 (2)C14—C151.387 (2)
C4—H4A0.9300C14—H14A0.9300
C5—C61.388 (2)C15—H15A0.9300
C5—H5A0.9300C16—H16A0.9600
C6—C71.491 (2)C16—H16B0.9600
C7—C81.495 (2)C16—H16C0.9600
C9—O2—C8117.12 (13)O3—C9—O2122.98 (15)
C2—C1—C6120.75 (17)O3—C9—C10125.56 (15)
C2—C1—H1A119.6O2—C9—C10111.46 (14)
C6—C1—H1A119.6C15—C10—C11119.15 (14)
C3—C2—C1119.28 (17)C15—C10—C9119.38 (14)
C3—C2—H2A120.4C11—C10—C9121.45 (14)
C1—C2—H2A120.4C12—C11—C10119.66 (15)
C2—C3—C4121.52 (16)C12—C11—H11A120.2
C2—C3—Cl1119.91 (15)C10—C11—H11A120.2
C4—C3—Cl1118.57 (15)C11—C12—C13121.67 (15)
C3—C4—C5118.90 (17)C11—C12—H12A119.2
C3—C4—H4A120.5C13—C12—H12A119.2
C5—C4—H4A120.5C12—C13—C14118.22 (14)
C4—C5—C6120.60 (16)C12—C13—C16120.48 (15)
C4—C5—H5A119.7C14—C13—C16121.28 (15)
C6—C5—H5A119.7C15—C14—C13120.59 (15)
C1—C6—C5118.94 (15)C15—C14—H14A119.7
C1—C6—C7118.97 (15)C13—C14—H14A119.7
C5—C6—C7122.08 (14)C10—C15—C14120.61 (15)
O1—C7—C6121.57 (15)C10—C15—H15A119.7
O1—C7—C8120.98 (15)C14—C15—H15A119.7
C6—C7—C8117.46 (13)C13—C16—H16A109.5
O2—C8—C7111.72 (14)C13—C16—H16B109.5
O2—C8—H8A109.3H16A—C16—H16B109.5
C7—C8—H8A109.3C13—C16—H16C109.5
O2—C8—H8B109.3H16A—C16—H16C109.5
C7—C8—H8B109.3H16B—C16—H16C109.5
H8A—C8—H8B107.9
C6—C1—C2—C30.6 (3)C8—O2—C9—O33.1 (2)
C1—C2—C3—C40.9 (3)C8—O2—C9—C10176.99 (14)
C1—C2—C3—Cl1179.20 (14)O3—C9—C10—C155.7 (2)
C2—C3—C4—C50.6 (3)O2—C9—C10—C15174.20 (14)
Cl1—C3—C4—C5179.55 (14)O3—C9—C10—C11172.90 (16)
C3—C4—C5—C60.1 (3)O2—C9—C10—C117.2 (2)
C2—C1—C6—C50.0 (3)C15—C10—C11—C122.2 (2)
C2—C1—C6—C7179.28 (16)C9—C10—C11—C12176.38 (15)
C4—C5—C6—C10.4 (3)C10—C11—C12—C130.3 (3)
C4—C5—C6—C7178.91 (16)C11—C12—C13—C142.6 (2)
C1—C6—C7—O12.9 (3)C11—C12—C13—C16176.20 (15)
C5—C6—C7—O1176.38 (18)C12—C13—C14—C152.3 (2)
C1—C6—C7—C8177.07 (16)C16—C13—C14—C15176.49 (15)
C5—C6—C7—C83.6 (2)C11—C10—C15—C142.5 (2)
C9—O2—C8—C777.7 (2)C9—C10—C15—C14176.13 (15)
O1—C7—C8—O27.0 (3)C13—C14—C15—C100.2 (3)
C6—C7—C8—O2173.03 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16C···O1i0.962.463.383 (2)162
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H13ClO3
Mr288.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)5.9132 (4), 8.5044 (6), 27.8767 (18)
β (°) 95.880 (1)
V3)1394.49 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.51 × 0.30 × 0.06
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.871, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
21275, 4070, 2628
Rint0.027
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.144, 1.05
No. of reflections4070
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16C···O1i0.962.463.383 (2)162
Symmetry code: (i) x, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). WSL also thanks the Malaysian government and USM for the award of the post of Research Officer under the Research University Grant (No. 1001/PFIZIK/811160). AMI thanks Professor Sandeep Sanchethi, Director of the National Institute of Technology-Karnataka, India for providing the research facilities. AMI also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India for the `Young Scientist' award. MNS thanks the Department of Information Technology, Government of India for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011). Acta Cryst. E67, o2854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds