organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­amino­pyridinium 2-hy­dr­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title mol­ecular salt, C5H8N3+·C7H5O3, the 2,3-diamino­pyridinium cation is essentially planar, with a maximum deviation of 0.006 (2) Å. In the crystal, adjacent cations and anions are linked by pairs of N—H⋯O hydrogen bonds, generating R22(8) loops. These dimers are linked by further N—H⋯O hydrogen bonds and C—H⋯O inter­actions to form sheets lying parallel to (001). A typical intra­molecular O—H⋯O hydrogen bond is also observed in the salicylate (2-hy­droxy­benzoate) anion, which generates an S(6) ring. The crystal structure also features ππ stacking inter­actions between the pyridinium rings of the cations, with a centroid–centroid distance of 3.5896 (15) Å.

Related literature

For details of 2-amino­pyridine and its derivatives, see: Banerjee & Murugavel (2004[Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-552.]); Bis & Zaworotko (2005[Bis, J. A. & Zaworotko, M. A. (2005). Cryst. Growth Des. 5, 1169-1179.]); Bis et al. (2006[Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648-2650.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H5O3

  • Mr = 247.25

  • Orthorhombic, P b c a

  • a = 10.484 (3) Å

  • b = 11.260 (3) Å

  • c = 20.033 (6) Å

  • V = 2364.9 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.54 × 0.47 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.990

  • 12688 measured reflections

  • 3388 independent reflections

  • 1989 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.144

  • S = 1.03

  • 3388 reflections

  • 216 parameters

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3 0.96 (2) 1.69 (2) 2.573 (2) 151.2 (18)
N1—H1N1⋯O2 0.94 (2) 1.80 (2) 2.736 (2) 171.1 (19)
N2—H1N2⋯O3 0.900 (19) 2.019 (19) 2.905 (2) 167.7 (18)
N2—H2N2⋯O2i 0.91 (2) 2.04 (2) 2.942 (2) 169.6 (18)
N3—H1N3⋯O2i 0.92 (2) 1.99 (2) 2.907 (2) 174.3 (19)
N3—H2N3⋯O3ii 0.88 (2) 2.14 (2) 2.994 (2) 163.9 (19)
C7—H7⋯O3iii 0.99 (2) 2.56 (2) 3.376 (3) 139.8 (17)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Aminopyridine and its derivatives are some of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Banerjee & Murugavel, 2004; Bis & Zaworotko, 2005; Bis et al., 2006). In this paper, we report the crystal structure of the title compound, (I), which belongs to this class of compounds.

The asymmetric unit, (Fig 1), contains a protonated 2,3-diaminopyridinium cation and a benzoate anion. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.006 (2) Å for atom C1. The diheral angle between the pyridine (N1/C1–C5) and the benzene (C6–C11) rings is 3.35 (9)°. The bond lengths (Allen et al., 1987) and angles are normal. A typical intramolecular O—H···O hydrogen bond is also observed in the salicylate anion, which generates an S(6) ring.

In the crystal packing, the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The cationic and anionic units are linked through N—H···O and C—H···O hydrogen bonds (Table 1 and Fig 2) to form a two-dimensional network parallel to the (0 0 1) plane. The crystal structure is further stabilized by ππ stacking interactions between the pyridinium (Cg1 = N1/C1–C5) rings (Cg1···Cg1 = 3.5896 (15) Å; 1-x, 1-y, 1-z) of the cations.

Related literature top

For details of 2-aminopyridine and its derivatives, see: Banerjee & Murugavel (2004); Bis & Zaworotko (2005); Bis et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and salicylic acid ( 34 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Brown plates of the title compound appeared from the mother liquor after a few days.

Refinement top

All hydrogen atoms were located from a difference Fourier maps and refined freely [N–H = 0.88 (2)–0.94 (2) Å; O–H = 0.96 (2) Å and C–H = 0.93 (2)–1.01 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. The crystal packing of title compound (I).
2,3-Diaminopyridinium 2-hydroxybenzoate top
Crystal data top
C5H8N3+·C7H5O3F(000) = 1040
Mr = 247.25Dx = 1.389 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2044 reflections
a = 10.484 (3) Åθ = 2.8–27.3°
b = 11.260 (3) ŵ = 0.10 mm1
c = 20.033 (6) ÅT = 100 K
V = 2364.9 (12) Å3Plate, brown
Z = 80.54 × 0.47 × 0.10 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
3388 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 30.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.947, Tmax = 0.990k = 815
12688 measured reflectionsl = 2723
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050All H-atom parameters refined
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2876P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3388 reflectionsΔρmax = 0.21 e Å3
216 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0084 (15)
Crystal data top
C5H8N3+·C7H5O3V = 2364.9 (12) Å3
Mr = 247.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.484 (3) ŵ = 0.10 mm1
b = 11.260 (3) ÅT = 100 K
c = 20.033 (6) Å0.54 × 0.47 × 0.10 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
3388 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1989 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.990Rint = 0.063
12688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.144All H-atom parameters refined
S = 1.03Δρmax = 0.21 e Å3
3388 reflectionsΔρmin = 0.21 e Å3
216 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28118 (14)0.47769 (11)0.49919 (8)0.0372 (3)
N20.31269 (15)0.31738 (13)0.42951 (8)0.0399 (4)
N30.49319 (18)0.22674 (14)0.52153 (10)0.0515 (4)
C10.34064 (15)0.37422 (13)0.48633 (8)0.0329 (4)
C20.43007 (15)0.33158 (13)0.53385 (9)0.0356 (4)
C30.45227 (17)0.39879 (16)0.58971 (10)0.0427 (4)
C40.38911 (19)0.50631 (16)0.60051 (11)0.0462 (5)
C50.30414 (18)0.54408 (15)0.55483 (10)0.0441 (4)
O10.04088 (13)0.39481 (11)0.24975 (8)0.0517 (4)
O20.09892 (12)0.57050 (10)0.41657 (6)0.0432 (3)
O30.08969 (11)0.40353 (9)0.35839 (6)0.0392 (3)
C60.09061 (16)0.50000 (14)0.26928 (9)0.0377 (4)
C70.18426 (18)0.54995 (18)0.22901 (11)0.0494 (5)
C80.23979 (19)0.65666 (18)0.24675 (11)0.0502 (5)
C90.20179 (18)0.71566 (17)0.30334 (11)0.0475 (5)
C100.10732 (17)0.66749 (14)0.34298 (10)0.0418 (4)
C110.04980 (14)0.55892 (13)0.32692 (9)0.0331 (4)
C120.05192 (15)0.50816 (13)0.37001 (8)0.0331 (4)
H30.5167 (19)0.3712 (17)0.6237 (10)0.056 (6)*
H40.4035 (18)0.5488 (16)0.6398 (10)0.049 (5)*
H50.2538 (19)0.6171 (18)0.5580 (10)0.054 (5)*
H70.212 (2)0.5068 (18)0.1886 (12)0.066 (6)*
H80.304 (2)0.6964 (16)0.2196 (10)0.050 (5)*
H90.2398 (17)0.7915 (16)0.3162 (9)0.042 (5)*
H100.0825 (19)0.7010 (16)0.3859 (11)0.048 (5)*
H1O10.016 (2)0.3733 (17)0.2853 (11)0.059 (6)*
H1N10.224 (2)0.5073 (16)0.4672 (10)0.048 (5)*
H1N20.2509 (18)0.3436 (15)0.4020 (10)0.038 (5)*
H2N20.3459 (18)0.2443 (19)0.4211 (10)0.054 (6)*
H1N30.465 (2)0.1816 (17)0.4864 (11)0.056 (6)*
H2N30.536 (2)0.1958 (16)0.5553 (11)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0357 (8)0.0335 (7)0.0423 (9)0.0034 (6)0.0022 (7)0.0001 (6)
N20.0419 (8)0.0376 (7)0.0401 (9)0.0062 (7)0.0096 (7)0.0050 (6)
N30.0599 (11)0.0414 (8)0.0531 (11)0.0154 (8)0.0212 (9)0.0047 (8)
C10.0295 (8)0.0312 (7)0.0380 (9)0.0034 (6)0.0004 (7)0.0020 (6)
C20.0347 (8)0.0330 (7)0.0391 (10)0.0017 (7)0.0035 (7)0.0037 (7)
C30.0405 (10)0.0447 (9)0.0429 (11)0.0018 (8)0.0079 (8)0.0017 (8)
C40.0495 (11)0.0454 (9)0.0436 (11)0.0020 (9)0.0021 (9)0.0086 (8)
C50.0453 (10)0.0373 (8)0.0496 (12)0.0035 (8)0.0010 (9)0.0071 (8)
O10.0476 (8)0.0510 (8)0.0565 (9)0.0040 (6)0.0077 (7)0.0173 (6)
O20.0458 (7)0.0389 (6)0.0449 (8)0.0057 (5)0.0135 (6)0.0061 (5)
O30.0405 (6)0.0319 (6)0.0453 (7)0.0023 (5)0.0005 (5)0.0002 (5)
C60.0315 (8)0.0394 (8)0.0423 (10)0.0046 (7)0.0007 (7)0.0031 (7)
C70.0397 (10)0.0614 (12)0.0471 (12)0.0056 (9)0.0103 (9)0.0050 (9)
C80.0377 (10)0.0561 (11)0.0568 (13)0.0006 (9)0.0133 (9)0.0056 (9)
C90.0405 (10)0.0403 (9)0.0617 (13)0.0022 (8)0.0126 (9)0.0024 (9)
C100.0380 (9)0.0362 (8)0.0513 (12)0.0001 (7)0.0092 (8)0.0021 (8)
C110.0276 (8)0.0321 (7)0.0395 (10)0.0052 (6)0.0004 (7)0.0019 (6)
C120.0304 (8)0.0324 (7)0.0366 (9)0.0028 (6)0.0031 (7)0.0032 (7)
Geometric parameters (Å, º) top
N1—C11.346 (2)O1—C61.352 (2)
N1—C51.364 (2)O1—H1O10.96 (2)
N1—H1N10.94 (2)O2—C121.267 (2)
N2—C11.338 (2)O3—C121.2646 (19)
N2—H1N20.90 (2)C6—C71.390 (3)
N2—H2N20.91 (2)C6—C111.399 (2)
N3—C21.376 (2)C7—C81.382 (3)
N3—H1N30.92 (2)C7—H70.99 (2)
N3—H2N30.88 (2)C8—C91.373 (3)
C1—C21.420 (2)C8—H80.97 (2)
C2—C31.371 (3)C9—C101.380 (3)
C3—C41.397 (3)C9—H90.977 (18)
C3—H31.01 (2)C10—C111.401 (2)
C4—C51.346 (3)C10—H100.97 (2)
C4—H40.93 (2)C11—C121.486 (2)
C5—H50.98 (2)
C1—N1—C5123.31 (15)N1—C5—H5114.7 (12)
C1—N1—H1N1118.2 (12)C6—O1—H1O1104.2 (12)
C5—N1—H1N1118.4 (12)O1—C6—C7117.32 (16)
C1—N2—H1N2121.4 (12)O1—C6—C11122.45 (16)
C1—N2—H2N2120.4 (13)C7—C6—C11120.22 (16)
H1N2—N2—H2N2117.3 (17)C8—C7—C6120.02 (18)
C2—N3—H1N3117.2 (13)C8—C7—H7120.9 (12)
C2—N3—H2N3116.5 (13)C6—C7—H7119.1 (12)
H1N3—N3—H2N3122.2 (18)C9—C8—C7120.72 (19)
N2—C1—N1118.37 (15)C9—C8—H8116.0 (11)
N2—C1—C2123.58 (15)C7—C8—H8123.2 (11)
N1—C1—C2118.05 (15)C8—C9—C10119.54 (18)
C3—C2—N3122.58 (16)C8—C9—H9121.5 (11)
C3—C2—C1118.21 (15)C10—C9—H9118.9 (11)
N3—C2—C1119.18 (16)C9—C10—C11121.31 (17)
C2—C3—C4121.63 (17)C9—C10—H10123.2 (11)
C2—C3—H3119.6 (11)C11—C10—H10115.2 (11)
C4—C3—H3118.7 (11)C6—C11—C10118.16 (15)
C5—C4—C3118.84 (18)C6—C11—C12121.10 (14)
C5—C4—H4121.2 (12)C10—C11—C12120.74 (15)
C3—C4—H4119.9 (12)O3—C12—O2122.00 (15)
C4—C5—N1119.95 (17)O3—C12—C11118.43 (14)
C4—C5—H5125.3 (12)O2—C12—C11119.57 (14)
C5—N1—C1—N2178.69 (16)C6—C7—C8—C91.3 (3)
C5—N1—C1—C21.1 (2)C7—C8—C9—C100.2 (3)
N2—C1—C2—C3178.90 (16)C8—C9—C10—C110.5 (3)
N1—C1—C2—C30.9 (2)O1—C6—C11—C10179.94 (16)
N2—C1—C2—N30.5 (3)C7—C6—C11—C101.0 (2)
N1—C1—C2—N3179.27 (15)O1—C6—C11—C120.2 (2)
N3—C2—C3—C4178.57 (18)C7—C6—C11—C12178.86 (16)
C1—C2—C3—C40.2 (3)C9—C10—C11—C60.0 (3)
C2—C3—C4—C50.2 (3)C9—C10—C11—C12179.93 (16)
C3—C4—C5—N10.1 (3)C6—C11—C12—O38.9 (2)
C1—N1—C5—C40.6 (3)C10—C11—C12—O3171.22 (15)
O1—C6—C7—C8179.24 (17)C6—C11—C12—O2170.49 (15)
C11—C6—C7—C81.7 (3)C10—C11—C12—O29.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O30.96 (2)1.69 (2)2.573 (2)151.2 (18)
N1—H1N1···O20.94 (2)1.80 (2)2.736 (2)171.1 (19)
N2—H1N2···O30.900 (19)2.019 (19)2.905 (2)167.7 (18)
N2—H2N2···O2i0.91 (2)2.04 (2)2.942 (2)169.6 (18)
N3—H1N3···O2i0.92 (2)1.99 (2)2.907 (2)174.3 (19)
N3—H2N3···O3ii0.88 (2)2.14 (2)2.994 (2)163.9 (19)
C7—H7···O3iii0.99 (2)2.56 (2)3.376 (3)139.8 (17)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H5O3
Mr247.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)10.484 (3), 11.260 (3), 20.033 (6)
V3)2364.9 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.54 × 0.47 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.947, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12688, 3388, 1989
Rint0.063
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.03
No. of reflections3388
No. of parameters216
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O30.96 (2)1.69 (2)2.573 (2)151.2 (18)
N1—H1N1···O20.94 (2)1.80 (2)2.736 (2)171.1 (19)
N2—H1N2···O30.900 (19)2.019 (19)2.905 (2)167.7 (18)
N2—H2N2···O2i0.91 (2)2.04 (2)2.942 (2)169.6 (18)
N3—H1N3···O2i0.92 (2)1.99 (2)2.907 (2)174.3 (19)
N3—H2N3···O3ii0.88 (2)2.14 (2)2.994 (2)163.9 (19)
C7—H7···O3iii0.99 (2)2.56 (2)3.376 (3)139.8 (17)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

MH, JHG and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBanerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648–2650.  Web of Science CSD CrossRef CAS Google Scholar
First citationBis, J. A. & Zaworotko, M. A. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds