organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-4′-[4-(tri­fluoro­meth­yl)phen­yl]di­spiro­[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title compound, C28H20F3NO3, the pyrrolidine ring adopts a half-chair conformation. The other five-membered rings adopt envelope conformations with the spiro and methylene C atoms as the flap atoms. In the crystal, mol­ecules are connected via weak C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane.

Related literature

For a related structure and background references, see: Wei et al. (2011[Wei, A. C., Ali, M. A., Ismail, R., Hemamalini, M. & Fun, H. K. (2011). Acta Cryst. E67, o3124.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20F3NO3

  • Mr = 475.45

  • Monoclinic, P 21 /n

  • a = 7.8070 (2) Å

  • b = 22.0878 (5) Å

  • c = 13.1278 (3) Å

  • β = 101.420 (2)°

  • V = 2218.93 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.27 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.986

  • 22102 measured reflections

  • 6530 independent reflections

  • 3872 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.162

  • S = 1.04

  • 6530 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O3i 0.95 2.52 3.130 (3) 122
C23—H23A⋯O1ii 0.95 2.51 3.104 (3) 121
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing search for novel heterocyclic compounds with antitubercular activity (Wei et al., 2011), our group has synthesized the title compound as described below.

The asymmetric unit of the title compound is shown in Fig. 1. The pyrrolidine ring (N1/C5/C10–C12) is twisted about the C5 and C12 bonds, with puckering parameters (Cremer & Pople, 1975) Q = 0.457 (2) Å and f = 46.8 (3)°, and adopting a half-chair conformation. The two five- membered carbocyclic rings, C3–C7 and C12–C14/C19,C20, are in envelope conformations: puckering parameters Q = 0.213 (2) Å and f = 76.2 (7)° with atom C5 at the flap; and Q = 0.234 (2) Å and f = 189.1 (6)° with atom C13 at the flap, respectively. The indane (C1–C9) ring is essentially planar [maximum deviation of 0.208 (2) Å for atom C5] and forms dihedral angles of 28.51 (10)° and 61.94 (9) ° with the terminal phenyl (C14–C19/C21–C26) rings.

In the crystal (Fig. 2), the molecules are connected via weak intermolecular C—H···O (Table 1) hydrogen bonds, forming two- dimensional networks parallel to the bc-plane.

Related literature top

For a related structure and background references, see: Wei et al. (2011). For ring puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (E)2-(4-trifluoromethylbenzylidene)-2,3-dihydro-1H- indene-1-one (0.001 mmol), ninhydrin (0.001 mmol) and sarcosine (0.002 mmol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the mixture was poured into water. The precipitated solid was filtered, washed and recrystallised from petroleum ether-ethyl acetate mixture (1:1) to reveal the title compound as yellow blocks.

Refinement top

All hydrogen atoms were positioned geometrically [ C–H = 0.95–1.00 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.
1'-Methyl-4'-[4-(trifluoromethyl)phenyl]dispiro[indan-2,2'-pyrrolidine- 3',2''-indan]-1,3,1''-trione top
Crystal data top
C28H20F3NO3F(000) = 984
Mr = 475.45Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3175 reflections
a = 7.8070 (2) Åθ = 2.4–29.0°
b = 22.0878 (5) ŵ = 0.11 mm1
c = 13.1278 (3) ÅT = 100 K
β = 101.420 (2)°Block, yellow
V = 2218.93 (9) Å30.27 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6530 independent reflections
Radiation source: fine-focus sealed tube3872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 30.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.971, Tmax = 0.986k = 3031
22102 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.6034P]
where P = (Fo2 + 2Fc2)/3
6530 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C28H20F3NO3V = 2218.93 (9) Å3
Mr = 475.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8070 (2) ŵ = 0.11 mm1
b = 22.0878 (5) ÅT = 100 K
c = 13.1278 (3) Å0.27 × 0.15 × 0.13 mm
β = 101.420 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6530 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3872 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.986Rint = 0.077
22102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
6530 reflectionsΔρmin = 0.40 e Å3
317 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.4957 (2)0.05331 (7)0.55766 (14)0.0444 (4)
F21.4706 (2)0.11963 (8)0.67246 (11)0.0414 (4)
F31.3006 (2)0.12198 (7)0.52402 (12)0.0404 (4)
O10.8027 (2)0.12100 (8)1.06182 (12)0.0259 (4)
O20.5579 (2)0.16217 (8)0.71690 (12)0.0283 (4)
O30.9907 (2)0.18882 (7)0.73016 (11)0.0249 (4)
N10.6695 (2)0.05913 (9)0.86261 (14)0.0208 (4)
C10.6883 (3)0.33200 (12)0.90164 (19)0.0264 (5)
H1A0.66430.37290.88130.032*
C20.6425 (3)0.28631 (11)0.82908 (18)0.0236 (5)
H2A0.58790.29520.75940.028*
C30.6793 (3)0.22679 (10)0.86166 (16)0.0200 (5)
C40.6483 (3)0.16958 (11)0.80161 (16)0.0207 (5)
C50.7496 (3)0.11868 (10)0.87093 (16)0.0172 (5)
C60.7754 (3)0.14805 (11)0.97970 (16)0.0195 (5)
C70.7564 (3)0.21422 (10)0.96488 (16)0.0194 (5)
C80.8017 (3)0.26022 (11)1.03752 (17)0.0228 (5)
H8A0.85340.25141.10770.027*
C90.7691 (3)0.31913 (11)1.00426 (18)0.0252 (5)
H9A0.80210.35151.05180.030*
C100.7002 (3)0.03124 (11)0.76618 (17)0.0227 (5)
H10A0.59730.03670.70930.027*
H10B0.72390.01260.77630.027*
C110.8606 (3)0.06418 (10)0.74080 (16)0.0183 (5)
H11A0.81580.09250.68220.022*
C120.9279 (3)0.10405 (10)0.83779 (15)0.0160 (4)
C131.0579 (3)0.07642 (10)0.93124 (16)0.0172 (5)
H13A0.99510.05850.98240.021*
H13B1.13160.04490.90780.021*
C141.1665 (3)0.13004 (10)0.97689 (16)0.0171 (5)
C151.2772 (3)0.13615 (11)1.07356 (16)0.0209 (5)
H15A1.29240.10371.12210.025*
C161.3649 (3)0.19073 (11)1.09748 (17)0.0235 (5)
H16A1.43840.19571.16380.028*
C171.3475 (3)0.23843 (11)1.02646 (17)0.0239 (5)
H17A1.40900.27521.04480.029*
C181.2409 (3)0.23229 (10)0.92931 (17)0.0210 (5)
H18A1.22930.26420.87980.025*
C191.1512 (3)0.17805 (10)0.90651 (16)0.0173 (5)
C201.0218 (3)0.16199 (10)0.81240 (16)0.0178 (5)
C210.9976 (3)0.02506 (10)0.70611 (16)0.0172 (5)
C221.0503 (3)0.03063 (10)0.75231 (16)0.0195 (5)
H22A0.99890.04490.80760.023*
C231.1761 (3)0.06544 (11)0.71882 (16)0.0200 (5)
H23A1.21060.10320.75100.024*
C241.2516 (3)0.04479 (10)0.63779 (16)0.0185 (5)
C251.2032 (3)0.01078 (10)0.59215 (16)0.0203 (5)
H25A1.25590.02520.53750.024*
C261.0776 (3)0.04543 (10)0.62653 (16)0.0194 (5)
H26A1.04560.08360.59530.023*
C271.3791 (3)0.08444 (11)0.59856 (17)0.0223 (5)
C280.4895 (3)0.05533 (12)0.8773 (2)0.0291 (6)
H28A0.48070.07390.94390.044*
H28B0.45420.01280.87710.044*
H28C0.41270.07680.82070.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0479 (11)0.0266 (9)0.0723 (12)0.0028 (7)0.0446 (9)0.0036 (8)
F20.0411 (10)0.0529 (11)0.0326 (8)0.0268 (8)0.0128 (7)0.0114 (7)
F30.0405 (10)0.0351 (9)0.0443 (9)0.0066 (7)0.0053 (7)0.0204 (7)
O10.0308 (10)0.0292 (10)0.0189 (7)0.0075 (7)0.0077 (7)0.0047 (7)
O20.0281 (10)0.0321 (10)0.0215 (8)0.0070 (8)0.0032 (7)0.0025 (7)
O30.0298 (10)0.0234 (9)0.0200 (8)0.0010 (7)0.0013 (7)0.0043 (7)
N10.0169 (10)0.0217 (11)0.0247 (9)0.0028 (8)0.0065 (8)0.0023 (8)
C10.0215 (12)0.0231 (13)0.0346 (13)0.0046 (10)0.0054 (10)0.0021 (10)
C20.0190 (12)0.0252 (13)0.0259 (11)0.0034 (10)0.0028 (9)0.0038 (10)
C30.0174 (11)0.0214 (13)0.0212 (10)0.0023 (9)0.0036 (9)0.0008 (9)
C40.0182 (11)0.0258 (13)0.0187 (10)0.0036 (9)0.0048 (8)0.0022 (9)
C50.0163 (11)0.0180 (12)0.0178 (9)0.0022 (9)0.0043 (8)0.0002 (8)
C60.0161 (11)0.0235 (13)0.0189 (10)0.0026 (9)0.0034 (8)0.0008 (9)
C70.0155 (11)0.0212 (12)0.0216 (10)0.0029 (9)0.0040 (8)0.0007 (9)
C80.0221 (12)0.0259 (13)0.0202 (10)0.0034 (10)0.0037 (9)0.0017 (9)
C90.0226 (13)0.0212 (13)0.0312 (12)0.0011 (10)0.0035 (10)0.0072 (10)
C100.0180 (12)0.0239 (13)0.0276 (11)0.0023 (9)0.0081 (9)0.0055 (10)
C110.0182 (11)0.0186 (12)0.0177 (10)0.0003 (9)0.0024 (8)0.0012 (9)
C120.0164 (11)0.0153 (11)0.0162 (9)0.0001 (8)0.0028 (8)0.0000 (8)
C130.0145 (11)0.0178 (12)0.0190 (10)0.0018 (8)0.0023 (8)0.0013 (8)
C140.0161 (11)0.0162 (12)0.0196 (10)0.0012 (9)0.0050 (8)0.0013 (8)
C150.0186 (11)0.0235 (13)0.0201 (10)0.0020 (9)0.0025 (9)0.0027 (9)
C160.0219 (12)0.0276 (14)0.0194 (10)0.0018 (10)0.0004 (9)0.0047 (9)
C170.0232 (12)0.0212 (13)0.0280 (11)0.0037 (10)0.0064 (9)0.0049 (10)
C180.0220 (12)0.0173 (12)0.0241 (11)0.0027 (9)0.0059 (9)0.0005 (9)
C190.0178 (11)0.0163 (12)0.0182 (10)0.0007 (8)0.0049 (8)0.0009 (8)
C200.0171 (11)0.0188 (12)0.0172 (10)0.0022 (9)0.0031 (8)0.0002 (8)
C210.0168 (11)0.0176 (12)0.0169 (9)0.0030 (8)0.0022 (8)0.0033 (8)
C220.0226 (12)0.0181 (12)0.0193 (10)0.0017 (9)0.0078 (9)0.0001 (9)
C230.0248 (12)0.0160 (12)0.0195 (10)0.0011 (9)0.0051 (9)0.0006 (8)
C240.0184 (11)0.0188 (12)0.0185 (10)0.0017 (9)0.0041 (8)0.0019 (9)
C250.0229 (12)0.0211 (12)0.0180 (10)0.0020 (9)0.0064 (9)0.0022 (9)
C260.0220 (12)0.0164 (12)0.0195 (10)0.0017 (9)0.0034 (9)0.0014 (8)
C270.0259 (13)0.0201 (13)0.0221 (10)0.0006 (10)0.0077 (9)0.0014 (9)
C280.0203 (13)0.0342 (15)0.0344 (13)0.0006 (11)0.0092 (10)0.0032 (11)
Geometric parameters (Å, º) top
F1—C271.336 (3)C12—C201.544 (3)
F2—C271.335 (3)C12—C131.554 (3)
F3—C271.335 (3)C13—C141.510 (3)
O1—C61.214 (3)C13—H13A0.9900
O2—C41.204 (2)C13—H13B0.9900
O3—C201.213 (2)C14—C151.393 (3)
N1—C51.451 (3)C14—C191.396 (3)
N1—C281.458 (3)C15—C161.391 (3)
N1—C101.470 (3)C15—H15A0.9500
C1—C21.385 (3)C16—C171.396 (3)
C1—C91.399 (3)C16—H16A0.9500
C1—H1A0.9500C17—C181.385 (3)
C2—C31.395 (3)C17—H17A0.9500
C2—H2A0.9500C18—C191.390 (3)
C3—C71.397 (3)C18—H18A0.9500
C3—C41.484 (3)C19—C201.476 (3)
C4—C51.560 (3)C21—C261.393 (3)
C5—C61.545 (3)C21—C221.397 (3)
C5—C121.572 (3)C22—C231.386 (3)
C6—C71.478 (3)C22—H22A0.9500
C7—C81.390 (3)C23—C241.391 (3)
C8—C91.380 (3)C23—H23A0.9500
C8—H8A0.9500C24—C251.385 (3)
C9—H9A0.9500C24—C271.492 (3)
C10—C111.541 (3)C25—C261.388 (3)
C10—H10A0.9900C25—H25A0.9500
C10—H10B0.9900C26—H26A0.9500
C11—C211.513 (3)C28—H28A0.9800
C11—C121.552 (3)C28—H28B0.9800
C11—H11A1.0000C28—H28C0.9800
C5—N1—C28117.03 (19)C14—C13—H13B111.1
C5—N1—C10107.67 (18)C12—C13—H13B111.1
C28—N1—C10114.55 (18)H13A—C13—H13B109.0
C2—C1—C9121.3 (2)C15—C14—C19119.1 (2)
C2—C1—H1A119.3C15—C14—C13129.5 (2)
C9—C1—H1A119.3C19—C14—C13111.44 (17)
C1—C2—C3117.8 (2)C16—C15—C14118.6 (2)
C1—C2—H2A121.1C16—C15—H15A120.7
C3—C2—H2A121.1C14—C15—H15A120.7
C2—C3—C7120.5 (2)C15—C16—C17121.7 (2)
C2—C3—C4129.64 (19)C15—C16—H16A119.2
C7—C3—C4109.86 (19)C17—C16—H16A119.2
O2—C4—C3127.6 (2)C18—C17—C16120.2 (2)
O2—C4—C5125.3 (2)C18—C17—H17A119.9
C3—C4—C5107.07 (17)C16—C17—H17A119.9
N1—C5—C6115.19 (18)C17—C18—C19117.9 (2)
N1—C5—C4116.63 (18)C17—C18—H18A121.1
C6—C5—C4101.22 (17)C19—C18—H18A121.1
N1—C5—C12100.66 (17)C18—C19—C14122.61 (19)
C6—C5—C12112.44 (17)C18—C19—C20128.3 (2)
C4—C5—C12111.17 (17)C14—C19—C20109.03 (19)
O1—C6—C7126.8 (2)O3—C20—C19127.6 (2)
O1—C6—C5125.6 (2)O3—C20—C12125.24 (19)
C7—C6—C5107.60 (17)C19—C20—C12107.10 (17)
C8—C7—C3121.5 (2)C26—C21—C22118.2 (2)
C8—C7—C6128.83 (19)C26—C21—C11119.3 (2)
C3—C7—C6109.68 (19)C22—C21—C11122.5 (2)
C9—C8—C7117.8 (2)C23—C22—C21121.1 (2)
C9—C8—H8A121.1C23—C22—H22A119.4
C7—C8—H8A121.1C21—C22—H22A119.4
C8—C9—C1121.1 (2)C22—C23—C24119.7 (2)
C8—C9—H9A119.5C22—C23—H23A120.2
C1—C9—H9A119.5C24—C23—H23A120.2
N1—C10—C11105.46 (18)C25—C24—C23120.1 (2)
N1—C10—H10A110.6C25—C24—C27121.0 (2)
C11—C10—H10A110.6C23—C24—C27119.0 (2)
N1—C10—H10B110.6C24—C25—C26119.9 (2)
C11—C10—H10B110.6C24—C25—H25A120.1
H10A—C10—H10B108.8C26—C25—H25A120.1
C21—C11—C10116.65 (19)C25—C26—C21121.1 (2)
C21—C11—C12115.24 (17)C25—C26—H26A119.5
C10—C11—C12104.37 (17)C21—C26—H26A119.5
C21—C11—H11A106.6F2—C27—F3105.84 (19)
C10—C11—H11A106.6F2—C27—F1106.4 (2)
C12—C11—H11A106.6F3—C27—F1106.00 (19)
C20—C12—C11113.04 (17)F2—C27—C24112.87 (18)
C20—C12—C13103.42 (16)F3—C27—C24112.13 (19)
C11—C12—C13119.14 (18)F1—C27—C24113.0 (2)
C20—C12—C5111.96 (18)N1—C28—H28A109.5
C11—C12—C599.75 (16)N1—C28—H28B109.5
C13—C12—C5109.75 (17)H28A—C28—H28B109.5
C14—C13—C12103.47 (17)N1—C28—H28C109.5
C14—C13—H13A111.1H28A—C28—H28C109.5
C12—C13—H13A111.1H28B—C28—H28C109.5
C9—C1—C2—C30.2 (4)C6—C5—C12—C11168.65 (18)
C1—C2—C3—C71.3 (4)C4—C5—C12—C1178.7 (2)
C1—C2—C3—C4178.9 (2)N1—C5—C12—C1380.37 (19)
C2—C3—C4—O214.0 (4)C6—C5—C12—C1342.7 (2)
C7—C3—C4—O2165.8 (2)C4—C5—C12—C13155.43 (17)
C2—C3—C4—C5168.4 (2)C20—C12—C13—C1422.8 (2)
C7—C3—C4—C511.9 (3)C11—C12—C13—C14149.22 (19)
C28—N1—C5—C665.2 (2)C5—C12—C13—C1496.8 (2)
C10—N1—C5—C6164.16 (18)C12—C13—C14—C15164.5 (2)
C28—N1—C5—C453.3 (3)C12—C13—C14—C1917.6 (2)
C10—N1—C5—C477.4 (2)C19—C14—C15—C161.8 (3)
C28—N1—C5—C12173.66 (17)C13—C14—C15—C16179.6 (2)
C10—N1—C5—C1243.0 (2)C14—C15—C16—C171.5 (4)
O2—C4—C5—N132.4 (3)C15—C16—C17—C180.1 (4)
C3—C4—C5—N1145.4 (2)C16—C17—C18—C191.0 (4)
O2—C4—C5—C6158.2 (2)C17—C18—C19—C140.7 (4)
C3—C4—C5—C619.6 (2)C17—C18—C19—C20175.5 (2)
O2—C4—C5—C1282.2 (3)C15—C14—C19—C180.7 (3)
C3—C4—C5—C12100.1 (2)C13—C14—C19—C18178.9 (2)
N1—C5—C6—O131.2 (3)C15—C14—C19—C20177.5 (2)
C4—C5—C6—O1158.0 (2)C13—C14—C19—C204.3 (3)
C12—C5—C6—O183.3 (3)C18—C19—C20—O313.6 (4)
N1—C5—C6—C7147.48 (19)C14—C19—C20—O3169.8 (2)
C4—C5—C6—C720.7 (2)C18—C19—C20—C12165.5 (2)
C12—C5—C6—C798.0 (2)C14—C19—C20—C1211.1 (2)
C2—C3—C7—C81.2 (4)C11—C12—C20—O329.4 (3)
C4—C3—C7—C8179.0 (2)C13—C12—C20—O3159.7 (2)
C2—C3—C7—C6178.0 (2)C5—C12—C20—O382.3 (3)
C4—C3—C7—C61.9 (3)C11—C12—C20—C19151.44 (18)
O1—C6—C7—C815.4 (4)C13—C12—C20—C1921.2 (2)
C5—C6—C7—C8165.9 (2)C5—C12—C20—C1996.9 (2)
O1—C6—C7—C3163.7 (2)C10—C11—C21—C26140.2 (2)
C5—C6—C7—C315.0 (2)C12—C11—C21—C2696.9 (2)
C3—C7—C8—C90.4 (4)C10—C11—C21—C2241.1 (3)
C6—C7—C8—C9179.4 (2)C12—C11—C21—C2281.9 (3)
C7—C8—C9—C11.9 (4)C26—C21—C22—C231.3 (3)
C2—C1—C9—C81.8 (4)C11—C21—C22—C23180.0 (2)
C5—N1—C10—C1122.4 (2)C21—C22—C23—C240.0 (3)
C28—N1—C10—C11154.43 (19)C22—C23—C24—C251.1 (3)
N1—C10—C11—C21136.47 (19)C22—C23—C24—C27176.4 (2)
N1—C10—C11—C128.1 (2)C23—C24—C25—C260.9 (3)
C21—C11—C12—C2079.4 (2)C27—C24—C25—C26176.6 (2)
C10—C11—C12—C20151.33 (18)C24—C25—C26—C210.5 (3)
C21—C11—C12—C1342.3 (3)C22—C21—C26—C251.5 (3)
C10—C11—C12—C1386.9 (2)C11—C21—C26—C25179.70 (19)
C21—C11—C12—C5161.54 (18)C25—C24—C27—F2151.1 (2)
C10—C11—C12—C532.3 (2)C23—C24—C27—F231.4 (3)
N1—C5—C12—C20165.38 (16)C25—C24—C27—F389.5 (3)
C6—C5—C12—C2071.5 (2)C23—C24—C27—F388.0 (2)
C4—C5—C12—C2041.2 (2)C25—C24—C27—F130.2 (3)
N1—C5—C12—C1145.54 (19)C23—C24—C27—F1152.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O3i0.952.523.130 (3)122
C23—H23A···O1ii0.952.513.104 (3)121
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC28H20F3NO3
Mr475.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.8070 (2), 22.0878 (5), 13.1278 (3)
β (°) 101.420 (2)
V3)2218.93 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
22102, 6530, 3872
Rint0.077
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.162, 1.04
No. of reflections6530
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O3i0.952.523.130 (3)122
C23—H23A···O1ii0.952.513.104 (3)121
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

ACW, MAA and TSC thank the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti of Sains Malaysia, Penang. This work was funded through Research Grant No. RUC (1001/PSK/8620012). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Ismail, R., Hemamalini, M. & Fun, H. K. (2011). Acta Cryst. E67, o3124.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds