organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-(4-Bromo­phen­yl)-1′-methyl­di­spiro­[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title compound, C27H20BrNO3, the pyrrolidine ring adopts a half-chair conformation, while the other five-membered rings adopt flattened envelope conformations with the spiro C atoms as the flap atoms. An intra­molecular C—H⋯O hydrogen bond occurs, generating an S(6) ring. In the crystal, mol­ecules are connected via weak C—H⋯O hydrogen bonds, forming chains along the c axis.

Related literature

For background to tuberculosis, see: Sunduru et al. (2010[Sunduru, N., Sharma, M. & Chauhan, P. M. S. (2010). Future Med. Chem. 2, 1469-1500.]); Trivedi et al. (2010[Trivedi, A. R., Bhuva, V. R., Dholariya, B. H., Dodiya, D. K., Kataria, V. B. & Shah, V. H. (2010). Bioorg. Med. Chem. Lett. 20, 6100-6102.]). For background to anti-tuberculous drugs, see: Moraski et al. (2011[Moraski, G. C., Markley, L. D., Hipskind, P. A., Boshoff, H., Cho, S., Franzblau, S. G. & Miller, M. J. (2011). Am. Chem. Soc. Med. Chem. Lett. 2, 466-470.]); Kumar et al. (2009[Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 3821-3829.]); Maheswari et al. (2010[Maheswari, S. U., Balamurugan, K., Perumal, S., Yogeeswari, P. & Sriram, D. (2010). Bioorg Med Chem Lett. 20, 7278-7282.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20BrNO3

  • Mr = 486.35

  • Monoclinic, P 21 /n

  • a = 7.8392 (1) Å

  • b = 21.5849 (5) Å

  • c = 12.7823 (3) Å

  • β = 98.422 (1)°

  • V = 2139.55 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.42 × 0.20 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.492, Tmax = 0.788

  • 18795 measured reflections

  • 6300 independent reflections

  • 4709 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.094

  • S = 1.02

  • 6300 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1 0.99 2.40 3.053 (2) 123
C15—H15A⋯O2i 0.95 2.44 3.163 (3) 133
C22—H22A⋯O3i 0.95 2.57 3.225 (3) 126
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tuberculosis (TB) is one of the most common chronic infections caused by Mycobacterium tuberculosis and is the world's second common cause of death from infectious diseases after AIDS (Sunduru et al., 2010). Among HIV infected patients, TB is the leading killer epidemic. About 2 million people living with HIV/AIDS die from TB every year (Trivedi et al., 2010). To make things even worse, the emergence of multiple drug resistant TB (MDR-TB), extensively drug resistant TB (XDR-TB) and extremely drug resistant TB (XXDR-TB) are on the rise (Moraski et al., 2011). These lead to the need for development of more potent drugs of new structures and with novel mechanisms of action (Trivedi et al., 2010). In our study, spiro nuclei were used as the core structure due to their potential antimycobacterial properties. Some studies have shown that many of these compounds displayed comparable or even better activities than some of the first-line TB drugs (Kumar et al., 2009; Maheswari et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The pyrrolidine ring (N1/C7–C10) is twisted about the C9–C10 bond, with puckering parameters (Cremer & Pople, 1975) Q = 0.449 (2) Å and f = 317.8 (3)°, and adopting a half-chair conformation. The two five- membered carbocyclic rings, C9/C19,C20/C25,C26 and C10–C12/C17–C18, are in envelope conformations: puckering parameters Q = 0.222 (2) Å and f = 182.7 (5)° with atom C9 at the flap; and Q = 0.216 (2) Å and f = 4.9 (5)° with atom C10 at the flap, respectively.

In the crystal packing, (Fig. 2), the molecules are connected via weak intermolecular C—H···O (Table 1) hydrogen bonds, forming one-dimensional chains along the c-axis.

Related literature top

For background to tuberculosis, see: Sunduru et al. (2010); Trivedi et al. (2010). For background to anti-tuberculous drugs, see: Moraski et al. (2011); Kumar et al. (2009); Maheswari et al. (2010). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (E)-2-(4-bromobenzylidene)-2,3-dihydro-1H-indene-1- one (0.001 mmol), ninhydrin (0.001 mmol) and sarcosine (0.002 mmol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice. The precipitated solid was filtered, washed with water and recrystallised from petroleum ether–ethyl acetate mixture (1:1) to reveal the title compound as yellow blocks.

Refinement top

All hydrogen atoms were positioned geometrically [ C–H = 0.95–1.00 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.
4'-(4-Bromophenyl)-1'-methyldispiro[indan-2,2'-pyrrolidine-3',2''-indan]- 1,3,1''-trione top
Crystal data top
C27H20BrNO3F(000) = 992
Mr = 486.35Dx = 1.510 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5478 reflections
a = 7.8392 (1) Åθ = 2.5–29.8°
b = 21.5849 (5) ŵ = 1.95 mm1
c = 12.7823 (3) ÅT = 100 K
β = 98.422 (1)°Block, yellow
V = 2139.55 (8) Å30.42 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6300 independent reflections
Radiation source: fine-focus sealed tube4709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.492, Tmax = 0.788k = 3021
18795 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.0757P]
where P = (Fo2 + 2Fc2)/3
6300 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C27H20BrNO3V = 2139.55 (8) Å3
Mr = 486.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8392 (1) ŵ = 1.95 mm1
b = 21.5849 (5) ÅT = 100 K
c = 12.7823 (3) Å0.42 × 0.20 × 0.13 mm
β = 98.422 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6300 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4709 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 0.788Rint = 0.036
18795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.02Δρmax = 0.78 e Å3
6300 reflectionsΔρmin = 0.72 e Å3
290 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43113 (3)0.100889 (10)0.065729 (18)0.03000 (8)
O10.22936 (19)0.10044 (7)0.55329 (11)0.0260 (3)
O20.0213 (2)0.18954 (7)0.22339 (11)0.0276 (3)
O30.4454 (2)0.15915 (7)0.21003 (11)0.0290 (4)
N10.3407 (2)0.04677 (8)0.34244 (13)0.0215 (4)
C10.2608 (2)0.05064 (9)0.11634 (15)0.0204 (4)
C20.1755 (3)0.07378 (10)0.19495 (16)0.0219 (4)
H2A0.20490.11320.22540.026*
C30.0460 (3)0.03840 (9)0.22887 (15)0.0203 (4)
H3A0.01390.05420.28260.024*
C40.0021 (2)0.01977 (9)0.18553 (14)0.0176 (4)
C50.0949 (3)0.04220 (9)0.10800 (15)0.0203 (4)
H5A0.06850.08210.07850.024*
C60.2249 (3)0.00746 (10)0.07308 (15)0.0222 (4)
H6A0.28760.02330.02070.027*
C70.1388 (2)0.05921 (9)0.21992 (15)0.0188 (4)
H7A0.17390.08980.16210.023*
C80.3039 (3)0.02450 (10)0.23916 (16)0.0224 (4)
H8A0.28460.02080.24080.027*
H8B0.40080.03420.18280.027*
C90.2654 (2)0.10771 (9)0.35915 (15)0.0185 (4)
C100.0832 (2)0.09696 (9)0.32268 (15)0.0170 (4)
C110.0410 (2)0.06671 (9)0.41356 (15)0.0182 (4)
H11A0.11570.03560.38590.022*
H11B0.02390.04640.46500.022*
C120.1463 (2)0.12043 (9)0.46402 (15)0.0187 (4)
C130.2532 (3)0.12312 (11)0.56122 (16)0.0259 (5)
H13A0.26940.08780.60580.031*
C140.3353 (3)0.17868 (12)0.59126 (17)0.0320 (5)
H14A0.40710.18120.65780.038*
C150.3152 (3)0.23066 (12)0.52644 (18)0.0316 (5)
H15A0.37170.26820.54950.038*
C160.2136 (3)0.22802 (10)0.42880 (17)0.0259 (4)
H16A0.20180.26290.38300.031*
C170.1288 (2)0.17243 (9)0.39946 (15)0.0192 (4)
C180.0067 (2)0.15870 (9)0.30345 (15)0.0193 (4)
C190.2491 (2)0.13185 (10)0.47401 (15)0.0203 (4)
C200.2659 (2)0.20008 (10)0.46840 (15)0.0193 (4)
C210.2248 (3)0.24379 (10)0.54822 (16)0.0235 (4)
H21A0.17880.23150.61800.028*
C220.2525 (3)0.30551 (11)0.52318 (17)0.0270 (5)
H22A0.22360.33620.57610.032*
C230.3230 (3)0.32353 (10)0.42047 (18)0.0274 (5)
H23A0.34290.36620.40530.033*
C240.3641 (3)0.28024 (10)0.34061 (17)0.0247 (4)
H24A0.41170.29260.27110.030*
C250.3334 (2)0.21820 (10)0.36564 (15)0.0202 (4)
C260.3611 (3)0.16237 (10)0.29702 (15)0.0214 (4)
C270.5213 (3)0.04025 (11)0.35822 (17)0.0282 (5)
H27A0.53460.05450.42940.042*
H27B0.59460.06520.30560.042*
H27C0.55560.00340.35030.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02737 (12)0.02655 (12)0.03979 (13)0.00148 (9)0.01733 (9)0.00830 (10)
O10.0272 (8)0.0313 (8)0.0191 (7)0.0046 (7)0.0025 (6)0.0031 (6)
O20.0340 (9)0.0244 (8)0.0241 (7)0.0011 (7)0.0026 (6)0.0056 (6)
O30.0289 (8)0.0354 (9)0.0200 (7)0.0075 (7)0.0057 (6)0.0027 (6)
N10.0155 (8)0.0263 (9)0.0232 (8)0.0029 (7)0.0047 (7)0.0042 (7)
C10.0166 (9)0.0225 (10)0.0228 (10)0.0027 (8)0.0052 (7)0.0073 (8)
C20.0239 (10)0.0184 (10)0.0240 (10)0.0013 (8)0.0056 (8)0.0018 (8)
C30.0213 (10)0.0209 (10)0.0203 (9)0.0041 (8)0.0079 (8)0.0013 (8)
C40.0163 (9)0.0194 (9)0.0164 (8)0.0026 (7)0.0001 (7)0.0046 (7)
C50.0214 (10)0.0198 (10)0.0192 (9)0.0039 (8)0.0012 (8)0.0005 (8)
C60.0223 (10)0.0253 (10)0.0199 (9)0.0067 (8)0.0061 (8)0.0020 (8)
C70.0169 (9)0.0202 (10)0.0187 (9)0.0002 (8)0.0009 (7)0.0021 (7)
C80.0166 (10)0.0268 (11)0.0236 (10)0.0014 (8)0.0021 (8)0.0071 (8)
C90.0180 (9)0.0207 (10)0.0163 (9)0.0016 (8)0.0009 (7)0.0013 (7)
C100.0150 (9)0.0180 (9)0.0177 (8)0.0012 (7)0.0011 (7)0.0015 (7)
C110.0164 (9)0.0186 (10)0.0191 (9)0.0025 (7)0.0010 (7)0.0015 (7)
C120.0140 (9)0.0244 (10)0.0178 (9)0.0021 (8)0.0024 (7)0.0024 (8)
C130.0187 (10)0.0400 (13)0.0190 (10)0.0028 (9)0.0027 (8)0.0010 (9)
C140.0204 (11)0.0530 (16)0.0223 (11)0.0053 (10)0.0017 (8)0.0125 (10)
C150.0246 (11)0.0371 (13)0.0341 (12)0.0091 (10)0.0077 (9)0.0167 (10)
C160.0248 (11)0.0234 (11)0.0313 (11)0.0036 (9)0.0095 (9)0.0064 (9)
C170.0150 (9)0.0223 (10)0.0209 (9)0.0006 (8)0.0048 (7)0.0044 (8)
C180.0182 (9)0.0185 (9)0.0215 (9)0.0037 (8)0.0039 (8)0.0010 (8)
C190.0142 (9)0.0274 (11)0.0191 (9)0.0038 (8)0.0022 (7)0.0016 (8)
C200.0128 (9)0.0251 (10)0.0197 (9)0.0036 (8)0.0011 (7)0.0011 (8)
C210.0188 (10)0.0320 (12)0.0189 (9)0.0050 (8)0.0001 (8)0.0042 (8)
C220.0212 (10)0.0300 (12)0.0288 (11)0.0023 (9)0.0009 (9)0.0075 (9)
C230.0208 (10)0.0233 (11)0.0374 (12)0.0034 (8)0.0020 (9)0.0006 (9)
C240.0188 (10)0.0297 (11)0.0247 (10)0.0044 (9)0.0005 (8)0.0030 (9)
C250.0161 (9)0.0249 (10)0.0194 (9)0.0039 (8)0.0019 (7)0.0018 (8)
C260.0177 (9)0.0260 (11)0.0198 (9)0.0037 (8)0.0010 (8)0.0005 (8)
C270.0194 (10)0.0368 (13)0.0293 (11)0.0021 (9)0.0066 (8)0.0039 (10)
Geometric parameters (Å, º) top
Br1—C11.906 (2)C11—H11A0.9900
O1—C191.210 (2)C11—H11B0.9900
O2—C181.214 (2)C12—C171.388 (3)
O3—C261.209 (2)C12—C131.394 (3)
N1—C91.445 (3)C13—C141.389 (3)
N1—C271.466 (3)C13—H13A0.9500
N1—C81.473 (3)C14—C151.390 (4)
C1—C21.379 (3)C14—H14A0.9500
C1—C61.383 (3)C15—C161.380 (3)
C2—C31.390 (3)C15—H15A0.9500
C2—H2A0.9500C16—C171.396 (3)
C3—C41.395 (3)C16—H16A0.9500
C3—H3A0.9500C17—C181.472 (3)
C4—C51.399 (3)C19—C201.479 (3)
C4—C71.510 (3)C20—C211.392 (3)
C5—C61.390 (3)C20—C251.398 (3)
C5—H5A0.9500C21—C221.380 (3)
C6—H6A0.9500C21—H21A0.9500
C7—C81.546 (3)C22—C231.403 (3)
C7—C101.553 (3)C22—H22A0.9500
C7—H7A1.0000C23—C241.387 (3)
C8—H8A0.9900C23—H23A0.9500
C8—H8B0.9900C24—C251.390 (3)
C9—C191.545 (3)C24—H24A0.9500
C9—C261.553 (3)C25—C261.488 (3)
C9—C101.583 (3)C27—H27A0.9800
C10—C181.544 (3)C27—H27B0.9800
C10—C111.546 (3)C27—H27C0.9800
C11—C121.512 (3)
C9—N1—C27116.69 (17)C17—C12—C13119.36 (19)
C9—N1—C8107.46 (16)C17—C12—C11111.48 (16)
C27—N1—C8114.35 (16)C13—C12—C11129.16 (19)
C2—C1—C6121.85 (19)C14—C13—C12118.4 (2)
C2—C1—Br1118.66 (16)C14—C13—H13A120.8
C6—C1—Br1119.48 (15)C12—C13—H13A120.8
C1—C2—C3118.85 (19)C13—C14—C15121.6 (2)
C1—C2—H2A120.6C13—C14—H14A119.2
C3—C2—H2A120.6C15—C14—H14A119.2
C2—C3—C4121.30 (18)C16—C15—C14120.4 (2)
C2—C3—H3A119.4C16—C15—H15A119.8
C4—C3—H3A119.4C14—C15—H15A119.8
C3—C4—C5118.01 (18)C15—C16—C17117.9 (2)
C3—C4—C7122.69 (18)C15—C16—H16A121.1
C5—C4—C7119.30 (18)C17—C16—H16A121.1
C6—C5—C4121.49 (19)C12—C17—C16122.24 (19)
C6—C5—H5A119.3C12—C17—C18109.19 (17)
C4—C5—H5A119.3C16—C17—C18128.53 (19)
C1—C6—C5118.46 (18)O2—C18—C17127.45 (19)
C1—C6—H6A120.8O2—C18—C10125.27 (18)
C5—C6—H6A120.8C17—C18—C10107.28 (16)
C4—C7—C8115.99 (17)O1—C19—C20126.71 (18)
C4—C7—C10114.55 (15)O1—C19—C9126.11 (19)
C8—C7—C10104.92 (15)C20—C19—C9107.17 (16)
C4—C7—H7A106.9C21—C20—C25120.93 (19)
C8—C7—H7A106.9C21—C20—C19129.02 (18)
C10—C7—H7A106.9C25—C20—C19110.05 (17)
N1—C8—C7105.26 (15)C22—C21—C20118.20 (19)
N1—C8—H8A110.7C22—C21—H21A120.9
C7—C8—H8A110.7C20—C21—H21A120.9
N1—C8—H8B110.7C21—C22—C23120.8 (2)
C7—C8—H8B110.7C21—C22—H22A119.6
H8A—C8—H8B108.8C23—C22—H22A119.6
N1—C9—C19115.00 (16)C24—C23—C22121.3 (2)
N1—C9—C26117.37 (16)C24—C23—H23A119.4
C19—C9—C26101.32 (15)C22—C23—H23A119.4
N1—C9—C10100.95 (15)C23—C24—C25117.79 (19)
C19—C9—C10112.11 (15)C23—C24—H24A121.1
C26—C9—C10110.47 (16)C25—C24—H24A121.1
C18—C10—C11103.44 (15)C24—C25—C20120.99 (19)
C18—C10—C7113.34 (16)C24—C25—C26129.75 (18)
C11—C10—C7118.79 (16)C20—C25—C26109.26 (18)
C18—C10—C9111.89 (15)O3—C26—C25126.98 (19)
C11—C10—C9109.65 (15)O3—C26—C9125.77 (19)
C7—C10—C999.93 (14)C25—C26—C9107.22 (15)
C12—C11—C10103.93 (16)N1—C27—H27A109.5
C12—C11—H11A111.0N1—C27—H27B109.5
C10—C11—H11A111.0H27A—C27—H27B109.5
C12—C11—H11B111.0N1—C27—H27C109.5
C10—C11—H11B111.0H27A—C27—H27C109.5
H11A—C11—H11B109.0H27B—C27—H27C109.5
C6—C1—C2—C32.2 (3)C14—C15—C16—C171.9 (3)
Br1—C1—C2—C3177.23 (14)C13—C12—C17—C160.6 (3)
C1—C2—C3—C40.5 (3)C11—C12—C17—C16179.99 (19)
C2—C3—C4—C51.2 (3)C13—C12—C17—C18178.51 (18)
C2—C3—C4—C7179.53 (18)C11—C12—C17—C182.1 (2)
C3—C4—C5—C61.2 (3)C15—C16—C17—C121.2 (3)
C7—C4—C5—C6179.50 (17)C15—C16—C17—C18176.3 (2)
C2—C1—C6—C52.2 (3)C12—C17—C18—O2168.6 (2)
Br1—C1—C6—C5177.24 (14)C16—C17—C18—O213.7 (3)
C4—C5—C6—C10.4 (3)C12—C17—C18—C1011.8 (2)
C3—C4—C7—C840.8 (2)C16—C17—C18—C10165.9 (2)
C5—C4—C7—C8139.97 (18)C11—C10—C18—O2160.17 (19)
C3—C4—C7—C1081.7 (2)C7—C10—C18—O230.2 (3)
C5—C4—C7—C1097.5 (2)C9—C10—C18—O281.9 (2)
C9—N1—C8—C725.6 (2)C11—C10—C18—C1720.3 (2)
C27—N1—C8—C7156.81 (17)C7—C10—C18—C17150.23 (16)
C4—C7—C8—N1131.75 (17)C9—C10—C18—C1797.69 (18)
C10—C7—C8—N14.3 (2)N1—C9—C19—O129.7 (3)
C27—N1—C9—C1965.1 (2)C26—C9—C19—O1157.37 (19)
C8—N1—C9—C19164.97 (16)C10—C9—C19—O184.8 (2)
C27—N1—C9—C2653.9 (2)N1—C9—C19—C20149.06 (16)
C8—N1—C9—C2676.0 (2)C26—C9—C19—C2021.41 (19)
C27—N1—C9—C10174.03 (16)C10—C9—C19—C2096.38 (18)
C8—N1—C9—C1044.09 (18)O1—C19—C20—C2116.3 (3)
C4—C7—C10—C1883.5 (2)C9—C19—C20—C21164.93 (19)
C8—C7—C10—C18148.17 (16)O1—C19—C20—C25163.7 (2)
C4—C7—C10—C1138.2 (2)C9—C19—C20—C2515.0 (2)
C8—C7—C10—C1190.1 (2)C25—C20—C21—C220.1 (3)
C4—C7—C10—C9157.30 (16)C19—C20—C21—C22180.0 (2)
C8—C7—C10—C928.97 (18)C20—C21—C22—C231.0 (3)
N1—C9—C10—C18164.44 (15)C21—C22—C23—C241.1 (3)
C19—C9—C10—C1872.7 (2)C22—C23—C24—C250.1 (3)
C26—C9—C10—C1839.5 (2)C23—C24—C25—C201.0 (3)
N1—C9—C10—C1181.38 (17)C23—C24—C25—C26178.8 (2)
C19—C9—C10—C1141.5 (2)C21—C20—C25—C241.1 (3)
C26—C9—C10—C11153.72 (15)C19—C20—C25—C24178.89 (18)
N1—C9—C10—C744.19 (17)C21—C20—C25—C26178.72 (18)
C19—C9—C10—C7167.09 (16)C19—C20—C25—C261.3 (2)
C26—C9—C10—C780.71 (17)C24—C25—C26—O314.7 (4)
C18—C10—C11—C1220.64 (19)C20—C25—C26—O3165.4 (2)
C7—C10—C11—C12147.24 (17)C24—C25—C26—C9166.9 (2)
C9—C10—C11—C1298.86 (17)C20—C25—C26—C913.0 (2)
C10—C11—C12—C1714.9 (2)N1—C9—C26—O331.6 (3)
C10—C11—C12—C13165.8 (2)C19—C9—C26—O3157.7 (2)
C17—C12—C13—C141.7 (3)C10—C9—C26—O383.3 (2)
C11—C12—C13—C14179.1 (2)N1—C9—C26—C25146.80 (17)
C12—C13—C14—C150.9 (3)C19—C9—C26—C2520.7 (2)
C13—C14—C15—C160.9 (3)C10—C9—C26—C2598.26 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O10.992.403.053 (2)123
C15—H15A···O2i0.952.443.163 (3)133
C22—H22A···O3i0.952.573.225 (3)126
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H20BrNO3
Mr486.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.8392 (1), 21.5849 (5), 12.7823 (3)
β (°) 98.422 (1)
V3)2139.55 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.42 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.492, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
18795, 6300, 4709
Rint0.036
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.02
No. of reflections6300
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.72

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O10.992.403.053 (2)123
C15—H15A···O2i0.952.443.163 (3)133
C22—H22A···O3i0.952.573.225 (3)126
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

ACW, MAA and RI thank the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti of Sains Malaysia, Penang. This work was funded through Research Grant No. RUC (1001/PSK/8620012). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 3821–3829.  PubMed Google Scholar
First citationMaheswari, S. U., Balamurugan, K., Perumal, S., Yogeeswari, P. & Sriram, D. (2010). Bioorg Med Chem Lett. 20, 7278–7282.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoraski, G. C., Markley, L. D., Hipskind, P. A., Boshoff, H., Cho, S., Franzblau, S. G. & Miller, M. J. (2011). Am. Chem. Soc. Med. Chem. Lett. 2, 466–470.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunduru, N., Sharma, M. & Chauhan, P. M. S. (2010). Future Med. Chem. 2, 1469–1500.  PubMed Google Scholar
First citationTrivedi, A. R., Bhuva, V. R., Dholariya, B. H., Dodiya, D. K., Kataria, V. B. & Shah, V. H. (2010). Bioorg. Med. Chem. Lett. 20, 6100–6102.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds