organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-hy­dr­oxy­benzyl­­idene)-4-methyl­benzohydrazide

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: desuoyang@yahoo.com.cn

(Received 19 October 2011; accepted 23 October 2011; online 29 October 2011)

The mol­ecule of the title compound, C15H13BrN2O2, displays an E conformation with respect to the C=N double bond and the dihedral angle between the planes of the benzene rings is 3.1 (2)°. An intra­molecular O—H⋯N inter­action generates an S(6) ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains along the c-axis direction.

Related literature

For a related structure and background references, see: Yang (2008[Yang, D.-S. (2008). Acta Cryst. E64, o1850.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O2

  • Mr = 333.18

  • Monoclinic, P 21 /n

  • a = 5.8290 (15) Å

  • b = 31.914 (3) Å

  • c = 7.6440 (11) Å

  • β = 91.535 (2)°

  • V = 1421.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.23 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.509, Tmax = 0.556

  • 11208 measured reflections

  • 3095 independent reflections

  • 1794 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.147

  • S = 1.03

  • 3095 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.94 2.653 (5) 146
N2—H2⋯O2i 0.90 (1) 2.00 (2) 2.856 (5) 159 (5)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of hydrazone compounds (Yang, 2008), the crystal structure of the title new hydrazone compound is reported.

In the title compound, Fig. 1, the molecule displays an E configuration with respect to the CN double bond. The two benzene rings form a dihedral angle of 3.1 (2)°. All the bond lengths are within normal ranges (Allen et al., 1987). The C7N1 bond length of 1.267 (5) Å, conforms to the value for a double bond. The bond length of 1.346 (6) Å between atoms C8 and N2, is intermediate between a C—N single bond and a CN double bond, because of conjugation effects in the molecule.

In the crystal structure, molecules are linked through N—H···O hydrogen bonds (Table 1), forming chains along the c axis (Fig. 2).

Related literature top

For a related structure and background references, see: Yang (2008). For reference bond lengths, see: Allen et al. (1987).

Experimental top

5-Bromo-2-hydroxybenzaldehyde (0.1 mmol, 20.1 mg) and 4-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in CHCl3 (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Colourless blocks of the title compound were formed by gradual evaporation of the solvent over a period of a week at room temperature.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H distance of 0.82 Å, C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O1 and C15).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing displacement ellipsoids drawn at the 30% probability level. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Molecular packing as viewed along the a axis. Hydrogen bonds are shown as dashed lines.
N'-(5-Bromo-2-hydroxybenzylidene)-4-methylbenzohydrazide top
Crystal data top
C15H13BrN2O2F(000) = 672
Mr = 333.18Dx = 1.557 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2291 reflections
a = 5.8290 (15) Åθ = 2.5–24.1°
b = 31.914 (3) ŵ = 2.89 mm1
c = 7.6440 (11) ÅT = 298 K
β = 91.535 (2)°Block, colorless
V = 1421.5 (4) Å30.27 × 0.23 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3095 independent reflections
Radiation source: fine-focus sealed tube1794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.509, Tmax = 0.556k = 4036
11208 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0437P)2 + 2.875P]
where P = (Fo2 + 2Fc2)/3
3095 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.90 e Å3
1 restraintΔρmin = 0.77 e Å3
Crystal data top
C15H13BrN2O2V = 1421.5 (4) Å3
Mr = 333.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8290 (15) ŵ = 2.89 mm1
b = 31.914 (3) ÅT = 298 K
c = 7.6440 (11) Å0.27 × 0.23 × 0.23 mm
β = 91.535 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3095 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1794 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.556Rint = 0.039
11208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.90 e Å3
3095 reflectionsΔρmin = 0.77 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.79558 (13)0.008223 (19)0.78795 (10)0.0890 (3)
N10.6602 (6)0.20499 (12)0.6325 (5)0.0457 (9)
N20.7868 (7)0.24095 (12)0.6598 (5)0.0495 (10)
O10.2871 (5)0.16182 (12)0.5406 (5)0.0637 (9)
H10.36600.18290.55280.096*
O20.5871 (6)0.27644 (10)0.4522 (4)0.0613 (9)
C10.6256 (7)0.13181 (14)0.6772 (5)0.0414 (10)
C20.4073 (8)0.12798 (16)0.5996 (6)0.0490 (11)
C30.3068 (9)0.08853 (18)0.5819 (7)0.0621 (14)
H30.16130.08610.53000.075*
C40.4188 (10)0.05350 (18)0.6397 (7)0.0643 (14)
H40.34970.02730.62800.077*
C50.6353 (9)0.05702 (16)0.7156 (6)0.0542 (12)
C60.7349 (8)0.09550 (15)0.7348 (6)0.0485 (11)
H60.88000.09740.78780.058*
C70.7427 (8)0.17169 (14)0.6988 (6)0.0460 (11)
H70.88080.17280.76250.055*
C80.7419 (7)0.27557 (14)0.5644 (6)0.0432 (10)
C90.8885 (7)0.31259 (13)0.6038 (5)0.0405 (10)
C101.1045 (7)0.30975 (15)0.6837 (6)0.0470 (11)
H101.16590.28360.71200.056*
C111.2287 (8)0.34575 (16)0.7212 (6)0.0534 (12)
H111.37360.34340.77420.064*
C121.1425 (8)0.38513 (15)0.6819 (6)0.0476 (11)
C130.9283 (8)0.38744 (15)0.6002 (6)0.0507 (12)
H130.86730.41350.57070.061*
C140.8044 (8)0.35190 (14)0.5619 (6)0.0471 (11)
H140.66090.35430.50660.056*
C151.2769 (9)0.42404 (17)0.7256 (7)0.0656 (15)
H15A1.24790.43230.84370.098*
H15B1.23110.44610.64690.098*
H15C1.43770.41850.71410.098*
H20.897 (7)0.2419 (17)0.744 (5)0.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1148 (6)0.0476 (3)0.1037 (6)0.0021 (3)0.0128 (4)0.0034 (3)
N10.041 (2)0.051 (2)0.044 (2)0.0050 (18)0.0146 (17)0.0014 (19)
N20.053 (2)0.046 (2)0.048 (2)0.0066 (18)0.0245 (18)0.0062 (18)
O10.0426 (19)0.080 (3)0.067 (2)0.0050 (18)0.0158 (17)0.002 (2)
O20.068 (2)0.053 (2)0.060 (2)0.0059 (17)0.0395 (18)0.0024 (16)
C10.038 (2)0.055 (3)0.031 (2)0.010 (2)0.0030 (19)0.005 (2)
C20.048 (3)0.063 (3)0.036 (2)0.001 (2)0.001 (2)0.000 (2)
C30.049 (3)0.081 (4)0.056 (3)0.026 (3)0.007 (2)0.009 (3)
C40.073 (4)0.060 (3)0.060 (3)0.024 (3)0.002 (3)0.007 (3)
C50.061 (3)0.057 (3)0.045 (3)0.008 (2)0.001 (2)0.008 (2)
C60.054 (3)0.054 (3)0.037 (3)0.009 (2)0.006 (2)0.005 (2)
C70.045 (3)0.051 (3)0.041 (3)0.003 (2)0.012 (2)0.001 (2)
C80.045 (3)0.046 (3)0.038 (2)0.006 (2)0.006 (2)0.004 (2)
C90.045 (2)0.047 (3)0.029 (2)0.001 (2)0.0058 (19)0.0038 (19)
C100.043 (3)0.050 (3)0.048 (3)0.005 (2)0.007 (2)0.007 (2)
C110.044 (3)0.066 (3)0.050 (3)0.004 (2)0.006 (2)0.007 (3)
C120.053 (3)0.052 (3)0.038 (3)0.012 (2)0.004 (2)0.003 (2)
C130.057 (3)0.046 (3)0.049 (3)0.006 (2)0.002 (2)0.004 (2)
C140.051 (3)0.047 (3)0.042 (3)0.002 (2)0.008 (2)0.005 (2)
C150.071 (4)0.058 (3)0.067 (4)0.015 (3)0.003 (3)0.000 (3)
Geometric parameters (Å, º) top
Br1—C51.891 (5)C6—H60.9300
N1—C71.267 (5)C7—H70.9300
N1—N21.377 (5)C8—C91.484 (6)
N2—C81.346 (6)C9—C141.381 (6)
N2—H20.899 (10)C9—C101.388 (6)
O1—C21.358 (6)C10—C111.384 (6)
O1—H10.8200C10—H100.9300
O2—C81.228 (5)C11—C121.384 (7)
C1—C61.389 (6)C11—H110.9300
C1—C21.395 (6)C12—C131.383 (6)
C1—C71.452 (6)C12—C151.501 (7)
C2—C31.394 (7)C13—C141.372 (6)
C3—C41.362 (7)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.379 (7)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.365 (6)C15—H15C0.9600
C7—N1—N2116.3 (3)O2—C8—C9122.1 (4)
C8—N2—N1120.4 (3)N2—C8—C9116.2 (4)
C8—N2—H2119 (4)C14—C9—C10118.2 (4)
N1—N2—H2120 (3)C14—C9—C8118.5 (4)
C2—O1—H1109.5C10—C9—C8123.2 (4)
C6—C1—C2117.9 (4)C11—C10—C9120.0 (4)
C6—C1—C7119.0 (4)C11—C10—H10120.0
C2—C1—C7123.1 (4)C9—C10—H10120.0
O1—C2—C3118.3 (4)C12—C11—C10121.6 (4)
O1—C2—C1121.9 (4)C12—C11—H11119.2
C3—C2—C1119.8 (5)C10—C11—H11119.2
C4—C3—C2120.9 (5)C13—C12—C11117.7 (4)
C4—C3—H3119.6C13—C12—C15121.1 (5)
C2—C3—H3119.6C11—C12—C15121.2 (4)
C3—C4—C5119.6 (5)C14—C13—C12121.0 (4)
C3—C4—H4120.2C14—C13—H13119.5
C5—C4—H4120.2C12—C13—H13119.5
C6—C5—C4120.0 (5)C13—C14—C9121.3 (4)
C6—C5—Br1120.3 (4)C13—C14—H14119.3
C4—C5—Br1119.7 (4)C9—C14—H14119.3
C5—C6—C1121.8 (4)C12—C15—H15A109.5
C5—C6—H6119.1C12—C15—H15B109.5
C1—C6—H6119.1H15A—C15—H15B109.5
N1—C7—C1121.2 (4)C12—C15—H15C109.5
N1—C7—H7119.4H15A—C15—H15C109.5
C1—C7—H7119.4H15B—C15—H15C109.5
O2—C8—N2121.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.653 (5)146
N2—H2···O2i0.90 (1)2.00 (2)2.856 (5)159 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O2
Mr333.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.8290 (15), 31.914 (3), 7.6440 (11)
β (°) 91.535 (2)
V3)1421.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.27 × 0.23 × 0.23
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.509, 0.556
No. of measured, independent and
observed [I > 2σ(I)] reflections
11208, 3095, 1794
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.147, 1.03
No. of reflections3095
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 0.77

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.653 (5)146
N2—H2···O2i0.899 (10)2.00 (2)2.856 (5)159 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges the project supported by the Office of Science and Technology of Shanxi Province (grant No. 2009 K01–51) and the project supported by the Key Research Item of Baoji University of Arts and Sciences (grant No. ZK1040).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2008). Acta Cryst. E64, o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds