organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[3-(4-Bromo­phen­yl)-1-phenyl-1H-pyrazol-4-yl]-1-(2,4-di­chloro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title mol­ecule, C24H15BrCl2N2O, the dihedral angles betwen the pyrazole ring and its N-bonded phenyl (A) and C-bonded bromo­benzene (B) rings are 10.34 (16) and 40.95 (15)°, respectively. The dihedral angle between rings A and B is 56.89 (17)°. The title mol­ecule exists in a trans conformation with respect to the acyclic C=C bond. In the crystal, mol­ecules are linked into inversion dimers by pairs of C—H⋯O hydrogen bonds, generating R22(14) loops. The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For a related structure and background references to pyrazoles, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o3102-o3103.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15BrCl2N2O

  • Mr = 498.19

  • Monoclinic, P 21 /c

  • a = 11.4203 (14) Å

  • b = 9.9357 (13) Å

  • c = 19.656 (3) Å

  • β = 94.653 (3)°

  • V = 2222.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 296 K

  • 0.38 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.504, Tmax = 0.803

  • 23842 measured reflections

  • 6480 independent reflections

  • 2743 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.140

  • S = 0.98

  • 6480 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.93 2.41 3.329 (4) 170
C15—H15ACg1ii 0.93 2.82 3.666 (3) 152
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of pyrazole derivatives with potential biological activities (Fun et al., 2011), we have synthesized the title compound, (I), to study its crystal structure.

In the title molecule (Fig. 1), the benzene (C19-C24) ring and the two phenyl (C1-C6 and C13-C18) rings form dihedral angles of 10.34 (16), 50.23 (16) and 40.95 (15)°, respectively, with the pyrazole ring (N1/N2/C10-C12). The benzene ring also forms dihedral angles of 56.89 (17) and 38.81 (16)° with dichloro-bound phenyl (C1-C6) and bromo-bound phenyl (C13-C18) rings, respectively. The phenyl rings form a dihedral angle of 89.57 (17)°. The title molecule exists in trans configuration with respect to the acyclic C8C9 bond [bond length = 1.336 (4) Å]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C11–H11A···O1 hydrogen bonds (Table 1), generating fourteen-membered D22(14) ring motifs (Bernstein et al., 1995). The crystal structure is further consolidated by C15–H15A···Cg1 (Table 1) interactions, where Cg1 is the centroid of C1-C6 phenyl ring.

Related literature top

For a related structure and background references to pyrazoles, see: Fun et al. (2011). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a cold, stirred mixture of methanol (20 ml) and sodium hydroxide (12.09 mmol), 2,4-dichloroacetophenone (4.03 mmol) was added. The reaction mixture was stirred for 10 min. 3-(4-Bromophenyl)-1-phenyl-1H-pyrazole-4- carbaldehyde (4.03 mmol) was added to this solution followed by tetrahydrofuran (30 ml). The solution was further stirred for 2 h at 273 K and then at room temperature for 5 h. It was then poured into ice cold water. The resulting solution was neutralized with dil. HCl. The solid that separated out was filtered, washed with water, dried and crystallized from ethanol to yield colourless blocks. Yield: 1.6 g, 80 %. M.p.: 457-458 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
(E)-3-[3-(4-Bromophenyl)-1-phenyl-1H-pyrazol-4-yl]-1- (2,4-dichlorophenyl)prop-2-en-1-one top
Crystal data top
C24H15BrCl2N2OF(000) = 1000
Mr = 498.19Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2554 reflections
a = 11.4203 (14) Åθ = 2.9–22.2°
b = 9.9357 (13) ŵ = 2.11 mm1
c = 19.656 (3) ÅT = 296 K
β = 94.653 (3)°Block, colourless
V = 2222.9 (5) Å30.38 × 0.21 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6480 independent reflections
Radiation source: fine-focus sealed tube2743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1516
Tmin = 0.504, Tmax = 0.803k = 1313
23842 measured reflectionsl = 2722
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.6604P]
where P = (Fo2 + 2Fc2)/3
6480 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C24H15BrCl2N2OV = 2222.9 (5) Å3
Mr = 498.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4203 (14) ŵ = 2.11 mm1
b = 9.9357 (13) ÅT = 296 K
c = 19.656 (3) Å0.38 × 0.21 × 0.11 mm
β = 94.653 (3)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6480 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2743 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.803Rint = 0.056
23842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 0.98Δρmax = 0.44 e Å3
6480 reflectionsΔρmin = 0.52 e Å3
271 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29004 (5)0.10153 (6)0.11448 (2)0.1353 (3)
O10.12637 (19)0.64502 (19)0.42799 (11)0.0738 (6)
N10.10263 (19)0.0347 (2)0.43425 (11)0.0521 (5)
N20.05301 (19)0.0315 (2)0.38311 (10)0.0532 (6)
C10.2092 (3)0.4905 (3)0.28237 (14)0.0621 (7)
H1A0.13320.46160.26930.075*
C20.2907 (3)0.4908 (4)0.23478 (16)0.0844 (10)
H2A0.27010.46290.19030.101*
C30.4027 (3)0.5329 (5)0.2538 (2)0.0960 (12)
C40.4336 (3)0.5741 (4)0.31980 (19)0.0865 (11)
H4A0.50970.60280.33250.104*
C50.3506 (3)0.5722 (3)0.36638 (15)0.0624 (8)
C60.2362 (2)0.5316 (3)0.34922 (13)0.0509 (6)
C70.1426 (2)0.5391 (3)0.39854 (14)0.0535 (7)
C80.0702 (2)0.4217 (3)0.40921 (15)0.0562 (7)
H8A0.00560.43300.43460.067*
C90.0901 (2)0.2988 (3)0.38512 (14)0.0528 (7)
H9A0.15470.28850.35970.063*
C100.0198 (2)0.1802 (3)0.39515 (14)0.0510 (6)
C110.0605 (2)0.1606 (3)0.44253 (14)0.0546 (7)
H11A0.08180.22310.47450.065*
C120.0218 (2)0.0567 (3)0.35954 (13)0.0499 (6)
C130.0901 (2)0.0206 (3)0.30199 (13)0.0513 (6)
C140.1383 (3)0.1062 (3)0.29778 (16)0.0647 (8)
H14A0.13020.16780.33270.078*
C150.1984 (3)0.1429 (3)0.24257 (18)0.0773 (9)
H15A0.23020.22880.24010.093*
C160.2106 (3)0.0517 (4)0.19150 (16)0.0771 (10)
C170.1647 (3)0.0740 (4)0.19476 (17)0.0854 (11)
H17A0.17410.13560.16000.102*
C180.1042 (3)0.1099 (3)0.24994 (15)0.0700 (8)
H18A0.07240.19590.25190.084*
C190.1936 (2)0.0283 (3)0.46832 (13)0.0538 (7)
C200.2579 (3)0.0449 (3)0.51087 (17)0.0778 (9)
H20A0.24230.13590.51800.093*
C210.3459 (3)0.0174 (4)0.54300 (19)0.0943 (12)
H21A0.38990.03250.57180.113*
C220.3699 (3)0.1507 (4)0.53335 (19)0.0871 (10)
H22A0.42940.19180.55540.105*
C230.3047 (3)0.2235 (4)0.49049 (19)0.0845 (10)
H23A0.32090.31420.48300.101*
C240.2153 (3)0.1630 (3)0.45838 (16)0.0695 (8)
H24A0.17020.21310.43020.083*
Cl10.50704 (12)0.5349 (2)0.19526 (7)0.1885 (8)
Cl20.39593 (8)0.61893 (11)0.44937 (5)0.0945 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1461 (4)0.1639 (5)0.1070 (4)0.0726 (3)0.0781 (3)0.0677 (3)
O10.0941 (15)0.0484 (12)0.0836 (15)0.0100 (11)0.0363 (12)0.0172 (11)
N10.0620 (14)0.0463 (13)0.0487 (13)0.0033 (11)0.0081 (11)0.0024 (10)
N20.0659 (14)0.0474 (13)0.0470 (12)0.0023 (11)0.0095 (11)0.0052 (10)
C10.0677 (18)0.0636 (19)0.0544 (17)0.0069 (15)0.0012 (15)0.0050 (14)
C20.094 (3)0.111 (3)0.0498 (18)0.027 (2)0.0131 (18)0.0086 (18)
C30.077 (3)0.145 (4)0.070 (2)0.030 (2)0.029 (2)0.007 (2)
C40.061 (2)0.122 (3)0.078 (2)0.0072 (19)0.0142 (18)0.008 (2)
C50.0647 (19)0.069 (2)0.0535 (17)0.0039 (15)0.0037 (15)0.0011 (14)
C60.0591 (17)0.0442 (15)0.0496 (15)0.0033 (13)0.0059 (13)0.0035 (12)
C70.0624 (17)0.0453 (16)0.0533 (16)0.0009 (13)0.0083 (13)0.0038 (13)
C80.0584 (17)0.0479 (17)0.0641 (18)0.0018 (13)0.0156 (14)0.0037 (13)
C90.0557 (16)0.0499 (17)0.0529 (16)0.0017 (13)0.0058 (13)0.0014 (13)
C100.0548 (16)0.0441 (16)0.0539 (16)0.0021 (12)0.0032 (13)0.0049 (12)
C110.0648 (17)0.0405 (16)0.0590 (17)0.0009 (13)0.0086 (14)0.0088 (12)
C120.0584 (16)0.0434 (16)0.0476 (15)0.0007 (13)0.0028 (13)0.0002 (12)
C130.0616 (16)0.0436 (16)0.0487 (15)0.0071 (13)0.0037 (13)0.0040 (12)
C140.077 (2)0.0516 (19)0.0670 (19)0.0017 (15)0.0178 (16)0.0001 (14)
C150.089 (2)0.060 (2)0.087 (2)0.0033 (17)0.034 (2)0.0154 (18)
C160.083 (2)0.086 (3)0.065 (2)0.0349 (19)0.0275 (17)0.0257 (18)
C170.126 (3)0.079 (3)0.0539 (19)0.032 (2)0.021 (2)0.0017 (17)
C180.099 (2)0.0571 (19)0.0543 (18)0.0068 (17)0.0096 (17)0.0015 (14)
C190.0604 (17)0.0539 (17)0.0463 (15)0.0079 (14)0.0007 (13)0.0022 (13)
C200.089 (2)0.065 (2)0.084 (2)0.0081 (17)0.0355 (19)0.0082 (17)
C210.093 (3)0.096 (3)0.100 (3)0.016 (2)0.045 (2)0.012 (2)
C220.084 (2)0.098 (3)0.082 (2)0.030 (2)0.020 (2)0.003 (2)
C230.093 (2)0.076 (2)0.084 (2)0.032 (2)0.006 (2)0.0035 (19)
C240.084 (2)0.061 (2)0.0650 (19)0.0174 (17)0.0129 (17)0.0086 (15)
Cl10.1164 (9)0.351 (2)0.1079 (9)0.0464 (13)0.0678 (8)0.0086 (13)
Cl20.0853 (6)0.1270 (8)0.0694 (6)0.0180 (5)0.0044 (5)0.0168 (5)
Geometric parameters (Å, º) top
Br1—C161.893 (3)C10—C121.414 (4)
O1—C71.222 (3)C11—H11A0.9300
N1—C111.346 (3)C12—C131.469 (4)
N1—N21.363 (3)C13—C181.374 (4)
N1—C191.425 (3)C13—C141.380 (4)
N2—C121.333 (3)C14—C151.379 (4)
C1—C21.372 (4)C14—H14A0.9300
C1—C61.387 (4)C15—C161.368 (5)
C1—H1A0.9300C15—H15A0.9300
C2—C31.369 (5)C16—C171.358 (5)
C2—H2A0.9300C17—C181.380 (4)
C3—C41.378 (5)C17—H17A0.9300
C3—Cl11.723 (3)C18—H18A0.9300
C4—C51.370 (4)C19—C201.367 (4)
C4—H4A0.9300C19—C241.373 (4)
C5—C61.384 (4)C20—C211.377 (4)
C5—Cl21.734 (3)C20—H20A0.9300
C6—C71.502 (4)C21—C221.363 (5)
C7—C81.455 (4)C21—H21A0.9300
C8—C91.336 (4)C22—C231.374 (5)
C8—H8A0.9300C22—H22A0.9300
C9—C101.448 (4)C23—C241.380 (4)
C9—H9A0.9300C23—H23A0.9300
C10—C111.373 (4)C24—H24A0.9300
C11—N1—N2111.8 (2)N2—C12—C13120.2 (2)
C11—N1—C19128.2 (2)C10—C12—C13128.6 (2)
N2—N1—C19119.8 (2)C18—C13—C14118.3 (3)
C12—N2—N1104.8 (2)C18—C13—C12121.1 (3)
C2—C1—C6122.3 (3)C14—C13—C12120.5 (2)
C2—C1—H1A118.8C15—C14—C13121.0 (3)
C6—C1—H1A118.8C15—C14—H14A119.5
C3—C2—C1119.0 (3)C13—C14—H14A119.5
C3—C2—H2A120.5C16—C15—C14119.3 (3)
C1—C2—H2A120.5C16—C15—H15A120.4
C2—C3—C4120.7 (3)C14—C15—H15A120.4
C2—C3—Cl1120.2 (3)C17—C16—C15120.8 (3)
C4—C3—Cl1119.2 (3)C17—C16—Br1119.4 (3)
C5—C4—C3119.1 (3)C15—C16—Br1119.8 (3)
C5—C4—H4A120.4C16—C17—C18119.7 (3)
C3—C4—H4A120.4C16—C17—H17A120.2
C4—C5—C6122.1 (3)C18—C17—H17A120.2
C4—C5—Cl2117.1 (3)C13—C18—C17121.0 (3)
C6—C5—Cl2120.7 (2)C13—C18—H18A119.5
C5—C6—C1116.7 (3)C17—C18—H18A119.5
C5—C6—C7122.4 (2)C20—C19—C24120.4 (3)
C1—C6—C7120.8 (2)C20—C19—N1120.1 (3)
O1—C7—C8120.8 (3)C24—C19—N1119.5 (3)
O1—C7—C6119.4 (2)C19—C20—C21119.3 (3)
C8—C7—C6119.7 (2)C19—C20—H20A120.3
C9—C8—C7124.5 (3)C21—C20—H20A120.3
C9—C8—H8A117.7C22—C21—C20121.3 (3)
C7—C8—H8A117.7C22—C21—H21A119.4
C8—C9—C10125.7 (3)C20—C21—H21A119.4
C8—C9—H9A117.2C21—C22—C23119.0 (3)
C10—C9—H9A117.2C21—C22—H22A120.5
C11—C10—C12104.6 (2)C23—C22—H22A120.5
C11—C10—C9128.0 (2)C22—C23—C24120.6 (3)
C12—C10—C9127.4 (2)C22—C23—H23A119.7
N1—C11—C10107.6 (2)C24—C23—H23A119.7
N1—C11—H11A126.2C19—C24—C23119.4 (3)
C10—C11—H11A126.2C19—C24—H24A120.3
N2—C12—C10111.2 (2)C23—C24—H24A120.3
C11—N1—N2—C120.1 (3)C11—C10—C12—N20.7 (3)
C19—N1—N2—C12176.1 (2)C9—C10—C12—N2178.7 (2)
C6—C1—C2—C30.1 (5)C11—C10—C12—C13178.5 (3)
C1—C2—C3—C40.1 (6)C9—C10—C12—C133.5 (4)
C1—C2—C3—Cl1179.9 (3)N2—C12—C13—C18136.9 (3)
C2—C3—C4—C50.1 (6)C10—C12—C13—C1840.7 (4)
Cl1—C3—C4—C5179.8 (3)N2—C12—C13—C1440.7 (4)
C3—C4—C5—C60.7 (5)C10—C12—C13—C14141.6 (3)
C3—C4—C5—Cl2177.6 (3)C18—C13—C14—C150.5 (5)
C4—C5—C6—C11.0 (4)C12—C13—C14—C15177.3 (3)
Cl2—C5—C6—C1177.2 (2)C13—C14—C15—C160.3 (5)
C4—C5—C6—C7175.3 (3)C14—C15—C16—C170.2 (5)
Cl2—C5—C6—C76.5 (4)C14—C15—C16—Br1178.7 (2)
C2—C1—C6—C50.7 (4)C15—C16—C17—C180.6 (5)
C2—C1—C6—C7175.6 (3)Br1—C16—C17—C18178.4 (2)
C5—C6—C7—O151.9 (4)C14—C13—C18—C170.1 (5)
C1—C6—C7—O1124.2 (3)C12—C13—C18—C17177.6 (3)
C5—C6—C7—C8129.9 (3)C16—C17—C18—C130.4 (5)
C1—C6—C7—C854.0 (4)C11—N1—C19—C206.9 (4)
O1—C7—C8—C9172.3 (3)N2—N1—C19—C20168.4 (3)
C6—C7—C8—C99.5 (4)C11—N1—C19—C24172.7 (3)
C7—C8—C9—C10179.8 (3)N2—N1—C19—C2412.0 (4)
C8—C9—C10—C1116.9 (5)C24—C19—C20—C210.9 (5)
C8—C9—C10—C12165.5 (3)N1—C19—C20—C21179.6 (3)
N2—N1—C11—C100.3 (3)C19—C20—C21—C220.2 (6)
C19—N1—C11—C10175.3 (2)C20—C21—C22—C230.2 (6)
C12—C10—C11—N10.6 (3)C21—C22—C23—C240.8 (6)
C9—C10—C11—N1178.6 (2)C20—C19—C24—C231.5 (5)
N1—N2—C12—C100.5 (3)N1—C19—C24—C23178.9 (3)
N1—N2—C12—C13178.5 (2)C22—C23—C24—C191.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.413.329 (4)170
C15—H15A···Cg1ii0.932.823.666 (3)152
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC24H15BrCl2N2O
Mr498.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.4203 (14), 9.9357 (13), 19.656 (3)
β (°) 94.653 (3)
V3)2222.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.38 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.504, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
23842, 6480, 2743
Rint0.056
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 0.98
No. of reflections6480
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.52

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.413.329 (4)170
C15—H15A···Cg1ii0.932.823.666 (3)152
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o3102–o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds