organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,4-Di­chloro­phen­yl)-3-[3-(4-meth­­oxy­phen­yl)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title mol­ecule, C25H18Cl2N2O2, the dihedral angles between the pyrazole ring and its N- and C-bonded benzene rings are 8.28 (11) and 40.89 (10)°, respectively. The dihedral angle between the benzene rings is 39.03 (11)°. The title mol­ecule exists in a trans conformation with respect to the acyclic C=C bond. In the crystal, mol­ecules are linked into inversion dimers by pairs of inter­molecular C—H⋯O hydrogen bonds, generating R22(14) loops.

Related literature

For related structures and background references to pyrazole derivatives, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011a). Acta Cryst. E67, o3102-o3103.],b[Fun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011b). Acta Cryst. E67, o3104.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18Cl2N2O2

  • Mr = 449.31

  • Monoclinic, P 21 /c

  • a = 11.5037 (9) Å

  • b = 9.9197 (8) Å

  • c = 19.6867 (16) Å

  • β = 94.986 (2)°

  • V = 2238.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.42 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.940

  • 24117 measured reflections

  • 6481 independent reflections

  • 3796 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.155

  • S = 1.02

  • 6481 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.93 2.35 3.271 (2) 171
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of pyrazole derivatives (Fun et al., 2011a,b), we have synthesized the title compound to study its crystal structure.

In the title molecule (Fig. 1), the benzene (C20-C25) ring and the two phenyl (C1-C6 and C13-C18) rings form dihedral angles of 8.28 (11), 52.12 (11) and 40.89 (10)°, respectively, with the pyrazole ring (N1/N2/C10-C12). The benzene ring also forms dihedral angles of 56.27 (12) and 39.03 (11)° with dichloro-bound phenyl (C1-C6) and methoxy-bound phenyl (C13-C18) rings, respectively. The phenyl rings form a dihedral angle of 87.40 (11)°. The title molecule exists in trans configuration with respect to the acyclic C8C9 bond [bond length = 1.331 (2) Å]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a,b).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C11–H11A···O1 hydrogen bonds (Table 1), generating fourteen-membered D22(14) ring motifs (Bernstein et al., 1995).

Related literature top

For related structures and background references to pyrazole derivatives, see: Fun et al. (2011a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987).

Experimental top

To a cold, stirred mixture of methanol (20 ml) and sodium hydroxide (12.09 mmol), 2,4-dichloroacetophenone (4.03 mmol) was added. The reaction mixture was stirred for 10 min. 3-(4-Methoxyphenyl)-1-phenyl-1H-pyrazole- 4-carbaldehyde (4.03 mmol) was added to this solution followed by tetrahydrofuran (30 ml). The solution was further stirred for 2 h at 293 K and then at room temperature for 5 h. It was then poured into ice cold water. The resulting solution was neutralized with dil. HCl. The solid that separated out was filtered, washed with water, dried and crystallized from ethanol to yield colourless blocks. Yield: 1.45 g, 80.55 %. M.p. : 447-449 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
(E)-1-(2,4-Dichlorophenyl)-3-[3-(4-methoxyphenyl)-1-phenyl- 1H-pyrazol-4-yl]prop-2-en-1-one top
Crystal data top
C25H18Cl2N2O2F(000) = 928
Mr = 449.31Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4457 reflections
a = 11.5037 (9) Åθ = 2.6–24.4°
b = 9.9197 (8) ŵ = 0.31 mm1
c = 19.6867 (16) ÅT = 296 K
β = 94.986 (2)°Block, colourless
V = 2238.0 (3) Å30.42 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6481 independent reflections
Radiation source: fine-focus sealed tube3796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.879, Tmax = 0.940k = 1113
24117 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.059P)2 + 0.6136P]
where P = (Fo2 + 2Fc2)/3
6481 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C25H18Cl2N2O2V = 2238.0 (3) Å3
Mr = 449.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5037 (9) ŵ = 0.31 mm1
b = 9.9197 (8) ÅT = 296 K
c = 19.6867 (16) Å0.42 × 0.26 × 0.20 mm
β = 94.986 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6481 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3796 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.940Rint = 0.031
24117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
6481 reflectionsΔρmin = 0.40 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00506 (8)0.00115 (14)0.29747 (5)0.1569 (5)
Cl20.10909 (6)0.10965 (8)0.04695 (4)0.1029 (3)
O10.37565 (15)0.14366 (14)0.07044 (8)0.0792 (5)
O20.22210 (16)0.57128 (19)0.35788 (8)0.0895 (5)
N10.60809 (12)0.46755 (15)0.06399 (7)0.0491 (3)
N20.55921 (13)0.53315 (15)0.11542 (7)0.0503 (3)
C10.29601 (17)0.0166 (2)0.21442 (10)0.0587 (5)
H1A0.37280.03990.22810.070*
C20.2134 (2)0.0251 (3)0.26089 (11)0.0758 (6)
H2A0.23390.05360.30530.091*
C30.1008 (2)0.0092 (3)0.24031 (14)0.0864 (8)
C40.06896 (18)0.0522 (3)0.17537 (14)0.0815 (7)
H4A0.00800.07580.16230.098*
C50.15265 (18)0.0601 (2)0.12960 (11)0.0630 (5)
C60.26828 (15)0.02566 (18)0.14784 (9)0.0503 (4)
C70.36214 (17)0.03724 (19)0.09968 (10)0.0544 (4)
C80.43666 (16)0.07857 (18)0.08997 (10)0.0556 (4)
H8A0.50250.06490.06660.067*
C90.41725 (15)0.20262 (18)0.11213 (9)0.0506 (4)
H9A0.35180.21450.13610.061*
C100.48768 (14)0.32072 (17)0.10265 (9)0.0484 (4)
C110.56707 (15)0.34103 (18)0.05548 (9)0.0521 (4)
H11A0.58860.27880.02350.063*
C120.48548 (14)0.44448 (17)0.13854 (9)0.0464 (4)
C130.41627 (15)0.47995 (17)0.19521 (9)0.0474 (4)
C140.40070 (18)0.3886 (2)0.24752 (10)0.0600 (5)
H14A0.43450.30350.24650.072*
C150.3361 (2)0.4226 (2)0.30053 (10)0.0692 (6)
H15A0.32650.36040.33500.083*
C160.28559 (18)0.5482 (2)0.30297 (10)0.0621 (5)
C170.30101 (18)0.6408 (2)0.25277 (10)0.0602 (5)
H17A0.26810.72630.25460.072*
C180.36598 (16)0.60618 (18)0.19929 (10)0.0536 (4)
H18A0.37600.66920.16530.064*
C200.69679 (15)0.5328 (2)0.03000 (9)0.0523 (4)
C210.7582 (2)0.4611 (2)0.01461 (12)0.0750 (6)
H21A0.74180.37060.02310.090*
C220.8442 (2)0.5251 (3)0.04652 (15)0.0998 (9)
H22A0.88610.47730.07690.120*
C230.8693 (2)0.6584 (3)0.03433 (15)0.0954 (9)
H23A0.92780.70050.05630.114*
C240.8083 (2)0.7289 (3)0.01009 (13)0.0868 (8)
H24A0.82600.81900.01910.104*
C250.7199 (2)0.6667 (2)0.04183 (11)0.0701 (6)
H25A0.67650.71550.07100.084*
C190.1650 (3)0.6978 (3)0.36102 (15)0.1027 (9)
H19A0.12460.70190.40160.154*
H19B0.11010.70810.32180.154*
H19C0.22170.76880.36180.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0996 (6)0.2564 (14)0.1240 (7)0.0561 (7)0.0633 (5)0.0367 (8)
Cl20.0988 (5)0.1161 (6)0.0880 (5)0.0188 (4)0.0244 (4)0.0211 (4)
O10.1073 (12)0.0476 (8)0.0883 (11)0.0132 (8)0.0403 (9)0.0177 (7)
O20.1016 (12)0.1057 (14)0.0668 (10)0.0030 (10)0.0394 (9)0.0014 (9)
N10.0534 (8)0.0454 (8)0.0492 (8)0.0048 (6)0.0081 (6)0.0045 (6)
N20.0573 (8)0.0455 (8)0.0490 (8)0.0038 (7)0.0088 (6)0.0049 (6)
C10.0565 (10)0.0626 (12)0.0565 (11)0.0029 (9)0.0020 (8)0.0010 (9)
C20.0789 (14)0.0938 (17)0.0554 (12)0.0208 (13)0.0093 (10)0.0001 (11)
C30.0659 (13)0.118 (2)0.0787 (17)0.0219 (13)0.0242 (12)0.0180 (15)
C40.0486 (11)0.0994 (19)0.0966 (19)0.0007 (11)0.0074 (11)0.0119 (15)
C50.0606 (11)0.0604 (12)0.0665 (12)0.0041 (9)0.0029 (9)0.0034 (9)
C60.0542 (9)0.0415 (9)0.0554 (10)0.0023 (7)0.0057 (8)0.0001 (7)
C70.0650 (11)0.0438 (10)0.0555 (10)0.0032 (8)0.0108 (8)0.0046 (8)
C80.0578 (10)0.0458 (10)0.0648 (11)0.0031 (8)0.0153 (8)0.0049 (8)
C90.0497 (9)0.0469 (10)0.0556 (10)0.0028 (7)0.0071 (7)0.0034 (8)
C100.0489 (9)0.0416 (9)0.0548 (10)0.0016 (7)0.0054 (7)0.0034 (7)
C110.0551 (9)0.0448 (10)0.0570 (11)0.0029 (8)0.0079 (8)0.0092 (8)
C120.0498 (9)0.0409 (9)0.0482 (9)0.0011 (7)0.0032 (7)0.0005 (7)
C130.0517 (9)0.0438 (9)0.0467 (9)0.0055 (7)0.0050 (7)0.0024 (7)
C140.0737 (12)0.0477 (11)0.0587 (11)0.0003 (9)0.0058 (9)0.0060 (8)
C150.0894 (15)0.0674 (14)0.0521 (11)0.0092 (11)0.0145 (10)0.0130 (9)
C160.0651 (11)0.0712 (14)0.0519 (11)0.0090 (10)0.0161 (9)0.0051 (9)
C170.0676 (11)0.0531 (11)0.0622 (12)0.0009 (9)0.0184 (9)0.0050 (9)
C180.0636 (10)0.0436 (10)0.0551 (10)0.0034 (8)0.0132 (8)0.0018 (8)
C200.0517 (9)0.0572 (11)0.0478 (10)0.0065 (8)0.0037 (7)0.0017 (8)
C210.0760 (14)0.0707 (14)0.0826 (15)0.0097 (11)0.0314 (12)0.0063 (12)
C220.0927 (18)0.112 (2)0.102 (2)0.0194 (17)0.0487 (16)0.0093 (17)
C230.0801 (16)0.119 (2)0.0897 (19)0.0360 (16)0.0247 (14)0.0108 (16)
C240.0942 (17)0.0819 (17)0.0840 (17)0.0398 (14)0.0068 (14)0.0048 (13)
C250.0831 (14)0.0645 (14)0.0639 (13)0.0221 (11)0.0124 (10)0.0057 (10)
C190.110 (2)0.113 (2)0.0925 (19)0.0034 (18)0.0490 (16)0.0307 (16)
Geometric parameters (Å, º) top
Cl1—C31.732 (2)C11—H11A0.9300
Cl2—C51.732 (2)C12—C131.469 (2)
O1—C71.219 (2)C13—C181.385 (2)
O2—C161.375 (2)C13—C141.395 (3)
O2—C191.420 (3)C14—C151.374 (3)
N1—C111.346 (2)C14—H14A0.9300
N1—N21.3652 (19)C15—C161.378 (3)
N1—C201.423 (2)C15—H15A0.9300
N2—C121.329 (2)C16—C171.372 (3)
C1—C21.377 (3)C17—C181.386 (3)
C1—C61.387 (3)C17—H17A0.9300
C1—H1A0.9300C18—H18A0.9300
C2—C31.367 (4)C20—C251.371 (3)
C2—H2A0.9300C20—C211.372 (3)
C3—C41.367 (4)C21—C221.373 (3)
C4—C51.377 (3)C21—H21A0.9300
C4—H4A0.9300C22—C231.370 (4)
C5—C61.390 (3)C22—H22A0.9300
C6—C71.502 (3)C23—C241.361 (4)
C7—C81.456 (3)C23—H23A0.9300
C8—C91.331 (2)C24—C251.384 (3)
C8—H8A0.9300C24—H24A0.9300
C9—C101.446 (2)C25—H25A0.9300
C9—H9A0.9300C19—H19A0.9600
C10—C111.373 (2)C19—H19B0.9600
C10—C121.418 (2)C19—H19C0.9600
C16—O2—C19117.41 (19)C18—C13—C12121.17 (15)
C11—N1—N2111.97 (14)C14—C13—C12121.21 (16)
C11—N1—C20128.54 (15)C15—C14—C13120.91 (19)
N2—N1—C20119.37 (14)C15—C14—H14A119.5
C12—N2—N1104.76 (14)C13—C14—H14A119.5
C2—C1—C6122.08 (19)C14—C15—C16120.39 (18)
C2—C1—H1A119.0C14—C15—H15A119.8
C6—C1—H1A119.0C16—C15—H15A119.8
C3—C2—C1118.6 (2)C17—C16—O2124.4 (2)
C3—C2—H2A120.7C17—C16—C15119.95 (18)
C1—C2—H2A120.7O2—C16—C15115.61 (19)
C2—C3—C4121.7 (2)C16—C17—C18119.53 (19)
C2—C3—Cl1119.7 (2)C16—C17—H17A120.2
C4—C3—Cl1118.7 (2)C18—C17—H17A120.2
C3—C4—C5118.9 (2)C13—C18—C17121.60 (17)
C3—C4—H4A120.5C13—C18—H18A119.2
C5—C4—H4A120.5C17—C18—H18A119.2
C4—C5—C6121.7 (2)C25—C20—C21120.49 (19)
C4—C5—Cl2117.99 (17)C25—C20—N1119.80 (17)
C6—C5—Cl2120.32 (16)C21—C20—N1119.71 (18)
C1—C6—C5117.05 (17)C20—C21—C22119.0 (2)
C1—C6—C7120.06 (16)C20—C21—H21A120.5
C5—C6—C7122.85 (17)C22—C21—H21A120.5
O1—C7—C8121.38 (17)C23—C22—C21121.0 (3)
O1—C7—C6119.50 (17)C23—C22—H22A119.5
C8—C7—C6119.10 (16)C21—C22—H22A119.5
C9—C8—C7124.68 (17)C24—C23—C22119.7 (2)
C9—C8—H8A117.7C24—C23—H23A120.1
C7—C8—H8A117.7C22—C23—H23A120.1
C8—C9—C10126.51 (16)C23—C24—C25120.1 (2)
C8—C9—H9A116.7C23—C24—H24A120.0
C10—C9—H9A116.7C25—C24—H24A120.0
C11—C10—C12104.58 (15)C20—C25—C24119.6 (2)
C11—C10—C9128.28 (16)C20—C25—H25A120.2
C12—C10—C9127.08 (15)C24—C25—H25A120.2
N1—C11—C10107.42 (15)O2—C19—H19A109.5
N1—C11—H11A126.3O2—C19—H19B109.5
C10—C11—H11A126.3H19A—C19—H19B109.5
N2—C12—C10111.27 (15)O2—C19—H19C109.5
N2—C12—C13120.38 (15)H19A—C19—H19C109.5
C10—C12—C13128.34 (15)H19B—C19—H19C109.5
C18—C13—C14117.61 (16)
C11—N1—N2—C120.55 (19)C9—C10—C12—N2178.05 (16)
C20—N1—N2—C12176.84 (15)C11—C10—C12—C13179.56 (17)
C6—C1—C2—C30.1 (4)C9—C10—C12—C133.1 (3)
C1—C2—C3—C40.4 (4)N2—C12—C13—C1840.9 (2)
C1—C2—C3—Cl1179.74 (18)C10—C12—C13—C18140.33 (19)
C2—C3—C4—C50.5 (4)N2—C12—C13—C14137.87 (19)
Cl1—C3—C4—C5179.7 (2)C10—C12—C13—C1440.9 (3)
C3—C4—C5—C60.1 (4)C18—C13—C14—C151.0 (3)
C3—C4—C5—Cl2178.0 (2)C12—C13—C14—C15179.78 (18)
C2—C1—C6—C50.3 (3)C13—C14—C15—C160.1 (3)
C2—C1—C6—C7178.16 (19)C19—O2—C16—C172.7 (3)
C4—C5—C6—C10.2 (3)C19—O2—C16—C15177.7 (2)
Cl2—C5—C6—C1178.28 (15)C14—C15—C16—C170.9 (3)
C4—C5—C6—C7178.1 (2)C14—C15—C16—O2179.47 (19)
Cl2—C5—C6—C73.9 (3)O2—C16—C17—C18179.4 (2)
C1—C6—C7—O1125.1 (2)C15—C16—C17—C181.0 (3)
C5—C6—C7—O152.7 (3)C14—C13—C18—C170.9 (3)
C1—C6—C7—C853.7 (3)C12—C13—C18—C17179.66 (17)
C5—C6—C7—C8128.5 (2)C16—C17—C18—C130.1 (3)
O1—C7—C8—C9169.9 (2)C11—N1—C20—C25174.64 (19)
C6—C7—C8—C911.3 (3)N2—N1—C20—C259.8 (3)
C7—C8—C9—C10178.89 (18)C11—N1—C20—C215.1 (3)
C8—C9—C10—C1119.4 (3)N2—N1—C20—C21170.51 (18)
C8—C9—C10—C12163.87 (19)C25—C20—C21—C220.9 (4)
N2—N1—C11—C100.1 (2)N1—C20—C21—C22179.4 (2)
C20—N1—C11—C10175.99 (17)C20—C21—C22—C230.1 (4)
C12—C10—C11—N10.32 (19)C21—C22—C23—C240.0 (5)
C9—C10—C11—N1177.64 (17)C22—C23—C24—C251.1 (4)
N1—N2—C12—C100.75 (19)C21—C20—C25—C242.0 (3)
N1—N2—C12—C13179.72 (15)N1—C20—C25—C24178.3 (2)
C11—C10—C12—N20.7 (2)C23—C24—C25—C202.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.353.271 (2)171
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H18Cl2N2O2
Mr449.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.5037 (9), 9.9197 (8), 19.6867 (16)
β (°) 94.986 (2)
V3)2238.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.42 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.879, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
24117, 6481, 3796
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.155, 1.02
No. of reflections6481
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.353.271 (2)171
Symmetry code: (i) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011a). Acta Cryst. E67, o3102–o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011b). Acta Cryst. E67, o3104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds