organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3117-o3118

4-(4-Methyl­piperazin-1-yl)-3-(5-phenyl-1,3,4-oxa­diazol-2-yl)-7-(tri­fluoro­meth­yl)quinoline

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title compound, C23H20F3N5O, the piperazine ring adopts a chair conformation. The quinoline ring makes dihedral angles of 56.61 (11), 49.94 (12) and 42.58 (14)° with the piperazine ring, the 1,3,4-oxadiazole ring and the benzene ring, respectively. An intra­molecular C—H⋯O hydrogen bond generates an S(7) ring motif. In the crystal, mol­ecules are linked into infinite chains along the b axis by C—H⋯N hydrogen bonds.

Related literature

For background to the properties and uses of quinoline deriv­atives, see: Kaur et al. (2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]); Eswaran et al. (2010[Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374-3383.]); Chou et al. (2010[Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047-8058.]); Chen et al. (2004[Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.]); Shingalapur et al. (2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20F3N5O

  • Mr = 439.44

  • Triclinic, [P \overline 1]

  • a = 8.5065 (15) Å

  • b = 10.2176 (17) Å

  • c = 13.709 (3) Å

  • α = 103.840 (5)°

  • β = 98.515 (5)°

  • γ = 109.034 (4)°

  • V = 1060.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.44 × 0.20 × 0.13 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.987

  • 13724 measured reflections

  • 4831 independent reflections

  • 2890 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.231

  • S = 1.04

  • 4831 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O1 0.97 2.38 3.018 (3) 123
C4—H4A⋯N4i 0.93 2.56 3.426 (4) 155
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The quinoline moiety is of great importance to chemists as well as biologists since it is one of the key building blocks for many naturally occurring compounds. Members of this family have wide range of applications in pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents. Some of the present day drugs such as chloroquine, mefloquine, tafenoquine and primaquine carry the quinoline moiety as the basic unit in their structures. Keeping in view of these biological importance, we have synthesized the title compound to study its crystal structure.

The molecular structure is shown in Fig. 1. The piperazine ring adopts a chair conformation with puckering parameters Q= 0.586 (3) Å, Θ= 4.2 (3)° and ϕ= 259 (4)° (Cremer & Pople, 1975). The quinoline (N1/C1–C9) ring makes dihedral angles of 56.61 (11), 49.94 (12) and 42.58 (14)° with the piperazine ring (N2/N3/C19–C22), 1,3,4-oxadiazole ring (O1/N4/N5/C10/C11) and benzene ring (C12–C17), respectively. An intramolecular C21—H21A···O1 hydrogen bond (Table 1) stabilized the molecular structure and forms an S(7) ring motif (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the molecules are linked into infinite one-dimensional chains along the b-axis by intermolecular C4—H4A···N4 hydrogen bonds (Table 1).

Related literature top

For background to the properties and uses of quinoline derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

The mixture of 4-chloro-3-(5-phenyl-1,3,4-oxadiazol-2-yl)-7-(trifluoromethyl) quinoline (0.10 g, 0.00026 mol), potassium carbonate (0.040 g, 0.00029 mol) and 1-methylpiperazine (0.028 g, 0.00028 mol) in dimethylformamide (5 ml) was stirred at 90 °C for 5 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized using ethanol to yield colouress blocks. Yield: 0.09 g; 77.58%. M.p.: 425–426 K.

Refinement top

All H atoms were positioned geometrically [C–H = 0.93, 0.96 or 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates the intramolecular bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding have been omitted for the sake of clarity.
4-(4-Methylpiperazin-1-yl)-3-(5-phenyl-1,3,4-oxadiazol-2-yl)- 7-(trifluoromethyl)quinoline top
Crystal data top
C23H20F3N5OZ = 2
Mr = 439.44F(000) = 456
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5065 (15) ÅCell parameters from 4219 reflections
b = 10.2176 (17) Åθ = 2.3–26.9°
c = 13.709 (3) ŵ = 0.11 mm1
α = 103.840 (5)°T = 296 K
β = 98.515 (5)°Block, colourless
γ = 109.034 (4)°0.44 × 0.20 × 0.13 mm
V = 1060.0 (4) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4831 independent reflections
Radiation source: fine-focus sealed tube2890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.954, Tmax = 0.987k = 1312
13724 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1328P)2 + 0.121P]
where P = (Fo2 + 2Fc2)/3
4831 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C23H20F3N5Oγ = 109.034 (4)°
Mr = 439.44V = 1060.0 (4) Å3
Triclinic, P1Z = 2
a = 8.5065 (15) ÅMo Kα radiation
b = 10.2176 (17) ŵ = 0.11 mm1
c = 13.709 (3) ÅT = 296 K
α = 103.840 (5)°0.44 × 0.20 × 0.13 mm
β = 98.515 (5)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2890 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.987Rint = 0.040
13724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
4831 reflectionsΔρmin = 0.28 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.5226 (3)0.6774 (2)0.27438 (12)0.0963 (6)
F20.5484 (3)0.7593 (2)0.14756 (14)0.1015 (6)
F30.7645 (3)0.6755 (2)0.20656 (17)0.1229 (9)
O10.7623 (2)0.17853 (16)0.22070 (11)0.0530 (4)
N10.6121 (3)0.1679 (2)0.10374 (15)0.0627 (6)
N20.9415 (2)0.0424 (2)0.19566 (13)0.0506 (5)
N31.1662 (3)0.0381 (2)0.39233 (14)0.0602 (5)
N40.8354 (3)0.2779 (3)0.10041 (17)0.0738 (7)
N50.8316 (3)0.3860 (2)0.18536 (18)0.0745 (7)
C10.8270 (3)0.0818 (3)0.09901 (16)0.0487 (5)
C20.7750 (3)0.2268 (3)0.03114 (15)0.0493 (5)
C30.8327 (3)0.3329 (3)0.05590 (17)0.0580 (6)
H3A0.90590.30920.12040.070*
C40.7844 (3)0.4679 (3)0.01160 (18)0.0606 (6)
H4A0.82400.53570.00660.073*
C50.6736 (3)0.5050 (3)0.10978 (17)0.0555 (6)
C60.6166 (3)0.4057 (3)0.13745 (17)0.0585 (6)
H6A0.54460.43140.20270.070*
C70.6652 (3)0.2655 (3)0.06883 (16)0.0534 (6)
C80.6647 (3)0.0358 (3)0.04098 (17)0.0611 (6)
H8A0.63180.03130.06520.073*
C90.7691 (3)0.0135 (3)0.06230 (16)0.0538 (6)
C100.7947 (3)0.1592 (3)0.12490 (17)0.0563 (6)
C110.7883 (3)0.3219 (3)0.25302 (18)0.0557 (6)
C120.7691 (3)0.3857 (3)0.35531 (18)0.0545 (6)
C130.7751 (4)0.5264 (3)0.3839 (2)0.0778 (8)
H13A0.78750.57940.33710.093*
C140.7628 (5)0.5883 (4)0.4819 (3)0.0946 (10)
H14A0.76750.68350.50110.113*
C150.7436 (4)0.5113 (3)0.5516 (2)0.0852 (9)
H15A0.73510.55390.61760.102*
C160.7371 (5)0.3730 (4)0.5239 (2)0.0907 (10)
H16A0.72410.32060.57100.109*
C170.7497 (5)0.3091 (3)0.4258 (2)0.0798 (8)
H17A0.74490.21390.40740.096*
C180.6293 (4)0.6518 (3)0.1835 (2)0.0661 (7)
C191.0295 (3)0.1042 (3)0.35015 (17)0.0603 (6)
H19A0.98990.13650.40630.072*
H19B1.07300.17330.31370.072*
C200.8802 (3)0.1007 (3)0.27605 (16)0.0568 (6)
H20A0.79410.19830.24460.068*
H20B0.82790.04040.31380.068*
C211.0767 (3)0.1013 (3)0.23898 (18)0.0585 (6)
H21A1.03440.16860.27880.070*
H21B1.11490.13720.18380.070*
C221.2244 (3)0.0892 (3)0.30838 (18)0.0599 (6)
H22A1.26610.02160.26820.072*
H22B1.31800.18340.33690.072*
C231.3087 (4)0.0320 (4)0.4630 (2)0.0857 (9)
H23A1.26900.00010.51840.129*
H23B1.39820.12690.49090.129*
H23C1.35240.03510.42580.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1233 (15)0.0904 (13)0.0601 (9)0.0372 (11)0.0038 (9)0.0121 (9)
F20.1358 (17)0.0692 (11)0.0916 (12)0.0266 (10)0.0267 (11)0.0283 (9)
F30.0936 (14)0.1201 (17)0.1324 (17)0.0514 (12)0.0326 (12)0.0196 (13)
O10.0703 (10)0.0585 (10)0.0514 (8)0.0397 (8)0.0224 (7)0.0284 (7)
N10.0840 (14)0.0819 (15)0.0464 (10)0.0542 (12)0.0177 (9)0.0291 (10)
N20.0607 (11)0.0572 (11)0.0437 (9)0.0274 (9)0.0124 (8)0.0261 (8)
N30.0700 (12)0.0684 (13)0.0479 (10)0.0342 (11)0.0073 (9)0.0208 (9)
N40.1127 (19)0.0686 (14)0.0645 (13)0.0471 (13)0.0351 (12)0.0373 (11)
N50.1079 (18)0.0646 (14)0.0703 (13)0.0425 (13)0.0323 (12)0.0344 (12)
C10.0581 (12)0.0623 (13)0.0425 (10)0.0336 (10)0.0192 (9)0.0266 (10)
C20.0592 (12)0.0613 (14)0.0431 (10)0.0338 (11)0.0173 (9)0.0254 (10)
C30.0731 (15)0.0656 (15)0.0484 (11)0.0387 (12)0.0117 (10)0.0252 (11)
C40.0770 (16)0.0645 (15)0.0567 (13)0.0402 (13)0.0194 (11)0.0269 (12)
C50.0629 (13)0.0649 (15)0.0481 (11)0.0301 (11)0.0199 (10)0.0217 (11)
C60.0650 (14)0.0768 (17)0.0448 (11)0.0372 (12)0.0144 (10)0.0230 (11)
C70.0607 (13)0.0724 (16)0.0445 (11)0.0381 (12)0.0190 (9)0.0267 (11)
C80.0831 (16)0.0787 (18)0.0496 (12)0.0528 (14)0.0231 (11)0.0343 (12)
C90.0706 (14)0.0669 (15)0.0485 (11)0.0436 (12)0.0246 (10)0.0305 (11)
C100.0721 (14)0.0682 (15)0.0508 (12)0.0422 (12)0.0233 (10)0.0308 (11)
C110.0660 (13)0.0553 (14)0.0595 (13)0.0337 (11)0.0161 (10)0.0263 (11)
C120.0576 (12)0.0557 (13)0.0597 (13)0.0303 (11)0.0139 (10)0.0221 (11)
C130.104 (2)0.0628 (17)0.0746 (17)0.0387 (15)0.0225 (15)0.0236 (14)
C140.133 (3)0.0618 (18)0.083 (2)0.0410 (19)0.0281 (19)0.0046 (16)
C150.099 (2)0.074 (2)0.0714 (18)0.0261 (16)0.0282 (16)0.0061 (15)
C160.138 (3)0.080 (2)0.0680 (17)0.046 (2)0.0438 (18)0.0297 (15)
C170.123 (3)0.0650 (18)0.0700 (17)0.0477 (17)0.0387 (16)0.0282 (14)
C180.0738 (16)0.0691 (17)0.0597 (14)0.0324 (13)0.0179 (12)0.0188 (12)
C190.0815 (16)0.0666 (16)0.0456 (11)0.0380 (13)0.0145 (11)0.0265 (11)
C200.0658 (14)0.0656 (15)0.0458 (11)0.0251 (11)0.0158 (10)0.0273 (11)
C210.0611 (13)0.0645 (15)0.0606 (13)0.0285 (11)0.0154 (11)0.0313 (12)
C220.0593 (13)0.0658 (15)0.0627 (14)0.0310 (12)0.0140 (11)0.0242 (12)
C230.088 (2)0.099 (2)0.0671 (16)0.0432 (17)0.0064 (14)0.0253 (16)
Geometric parameters (Å, º) top
F1—C181.342 (3)C8—C91.429 (3)
F2—C181.338 (3)C8—H8A0.9300
F3—C181.316 (3)C9—C101.457 (3)
O1—C111.356 (3)C11—C121.456 (3)
O1—C101.363 (3)C12—C131.378 (4)
N1—C81.303 (3)C12—C171.379 (4)
N1—C71.374 (3)C13—C141.376 (4)
N2—C11.404 (3)C13—H13A0.9300
N2—C211.452 (3)C14—C151.372 (4)
N2—C201.457 (3)C14—H14A0.9300
N3—C191.448 (3)C15—C161.353 (5)
N3—C221.459 (3)C15—H15A0.9300
N3—C231.464 (3)C16—C171.383 (4)
N4—C101.288 (3)C16—H16A0.9300
N4—N51.413 (3)C17—H17A0.9300
N5—C111.288 (3)C19—C201.520 (3)
C1—C91.385 (3)C19—H19A0.9700
C1—C21.430 (3)C19—H19B0.9700
C2—C31.416 (3)C20—H20A0.9700
C2—C71.424 (3)C20—H20B0.9700
C3—C41.355 (3)C21—C221.518 (3)
C3—H3A0.9300C21—H21A0.9700
C4—C51.411 (3)C21—H21B0.9700
C4—H4A0.9300C22—H22A0.9700
C5—C61.363 (3)C22—H22B0.9700
C5—C181.486 (4)C23—H23A0.9600
C6—C71.401 (4)C23—H23B0.9600
C6—H6A0.9300C23—H23C0.9600
C11—O1—C10103.18 (17)C15—C14—C13120.7 (3)
C8—N1—C7117.4 (2)C15—C14—H14A119.6
C1—N2—C21120.91 (17)C13—C14—H14A119.6
C1—N2—C20119.14 (18)C16—C15—C14119.7 (3)
C21—N2—C20111.94 (17)C16—C15—H15A120.2
C19—N3—C22109.93 (18)C14—C15—H15A120.2
C19—N3—C23110.1 (2)C15—C16—C17120.4 (3)
C22—N3—C23110.4 (2)C15—C16—H16A119.8
C10—N4—N5106.5 (2)C17—C16—H16A119.8
C11—N5—N4105.9 (2)C12—C17—C16120.3 (3)
C9—C1—N2124.0 (2)C12—C17—H17A119.8
C9—C1—C2117.54 (19)C16—C17—H17A119.8
N2—C1—C2118.30 (19)F3—C18—F2106.3 (3)
C3—C2—C7117.7 (2)F3—C18—F1105.9 (2)
C3—C2—C1123.64 (19)F2—C18—F1104.3 (2)
C7—C2—C1118.6 (2)F3—C18—C5113.0 (2)
C4—C3—C2122.0 (2)F2—C18—C5112.9 (2)
C4—C3—H3A119.0F1—C18—C5113.7 (2)
C2—C3—H3A119.0N3—C19—C20111.1 (2)
C3—C4—C5119.5 (2)N3—C19—H19A109.4
C3—C4—H4A120.3C20—C19—H19A109.4
C5—C4—H4A120.3N3—C19—H19B109.4
C6—C5—C4120.6 (2)C20—C19—H19B109.4
C6—C5—C18121.3 (2)H19A—C19—H19B108.0
C4—C5—C18118.0 (2)N2—C20—C19109.67 (19)
C5—C6—C7120.8 (2)N2—C20—H20A109.7
C5—C6—H6A119.6C19—C20—H20A109.7
C7—C6—H6A119.6N2—C20—H20B109.7
N1—C7—C6117.9 (2)C19—C20—H20B109.7
N1—C7—C2122.6 (2)H20A—C20—H20B108.2
C6—C7—C2119.4 (2)N2—C21—C22108.10 (19)
N1—C8—C9124.8 (2)N2—C21—H21A110.1
N1—C8—H8A117.6C22—C21—H21A110.1
C9—C8—H8A117.6N2—C21—H21B110.1
C1—C9—C8119.0 (2)C22—C21—H21B110.1
C1—C9—C10124.4 (2)H21A—C21—H21B108.4
C8—C9—C10116.4 (2)N3—C22—C21109.5 (2)
N4—C10—O1111.9 (2)N3—C22—H22A109.8
N4—C10—C9128.8 (2)C21—C22—H22A109.8
O1—C10—C9119.1 (2)N3—C22—H22B109.8
N5—C11—O1112.5 (2)C21—C22—H22B109.8
N5—C11—C12127.8 (2)H22A—C22—H22B108.2
O1—C11—C12119.6 (2)N3—C23—H23A109.5
C13—C12—C17119.0 (2)N3—C23—H23B109.5
C13—C12—C11119.9 (2)H23A—C23—H23B109.5
C17—C12—C11121.0 (2)N3—C23—H23C109.5
C14—C13—C12119.9 (3)H23A—C23—H23C109.5
C14—C13—H13A120.1H23B—C23—H23C109.5
C12—C13—H13A120.1
C10—N4—N5—C110.2 (3)C8—C9—C10—N447.0 (4)
C21—N2—C1—C934.4 (3)C1—C9—C10—O146.5 (3)
C20—N2—C1—C9112.0 (3)C8—C9—C10—O1128.1 (2)
C21—N2—C1—C2141.4 (2)N4—N5—C11—O10.1 (3)
C20—N2—C1—C272.2 (3)N4—N5—C11—C12178.8 (2)
C9—C1—C2—C3176.0 (2)C10—O1—C11—N50.3 (3)
N2—C1—C2—C30.1 (3)C10—O1—C11—C12178.7 (2)
C9—C1—C2—C71.1 (3)N5—C11—C12—C138.9 (4)
N2—C1—C2—C7177.17 (18)O1—C11—C12—C13172.3 (2)
C7—C2—C3—C41.0 (3)N5—C11—C12—C17169.2 (3)
C1—C2—C3—C4178.1 (2)O1—C11—C12—C179.6 (4)
C2—C3—C4—C50.1 (4)C17—C12—C13—C140.4 (5)
C3—C4—C5—C60.7 (4)C11—C12—C13—C14177.8 (3)
C3—C4—C5—C18177.4 (2)C12—C13—C14—C150.4 (5)
C4—C5—C6—C70.6 (4)C13—C14—C15—C160.2 (6)
C18—C5—C6—C7177.2 (2)C14—C15—C16—C170.0 (6)
C8—N1—C7—C6176.9 (2)C13—C12—C17—C160.3 (5)
C8—N1—C7—C20.7 (3)C11—C12—C17—C16177.9 (3)
C5—C6—C7—N1176.1 (2)C15—C16—C17—C120.1 (6)
C5—C6—C7—C20.2 (4)C6—C5—C18—F3117.0 (3)
C3—C2—C7—N1175.1 (2)C4—C5—C18—F359.7 (3)
C1—C2—C7—N12.2 (3)C6—C5—C18—F2122.3 (3)
C3—C2—C7—C61.0 (3)C4—C5—C18—F261.0 (3)
C1—C2—C7—C6178.3 (2)C6—C5—C18—F13.8 (4)
C7—N1—C8—C92.0 (4)C4—C5—C18—F1179.6 (2)
N2—C1—C9—C8174.6 (2)C22—N3—C19—C2057.9 (3)
C2—C1—C9—C81.3 (3)C23—N3—C19—C20179.7 (2)
N2—C1—C9—C1011.0 (4)C1—N2—C20—C19154.1 (2)
C2—C1—C9—C10173.1 (2)C21—N2—C20—C1956.7 (3)
N1—C8—C9—C13.0 (4)N3—C19—C20—N255.0 (3)
N1—C8—C9—C10171.8 (2)C1—N2—C21—C22151.8 (2)
N5—N4—C10—O10.4 (3)C20—N2—C21—C2259.7 (2)
N5—N4—C10—C9175.7 (2)C19—N3—C22—C2160.9 (3)
C11—O1—C10—N40.4 (3)C23—N3—C22—C21177.4 (2)
C11—O1—C10—C9176.2 (2)N2—C21—C22—N361.0 (3)
C1—C9—C10—N4138.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O10.972.383.018 (3)123
C4—H4A···N4i0.932.563.426 (4)155
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H20F3N5O
Mr439.44
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5065 (15), 10.2176 (17), 13.709 (3)
α, β, γ (°)103.840 (5), 98.515 (5), 109.034 (4)
V3)1060.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.44 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13724, 4831, 2890
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.231, 1.04
No. of reflections4831
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O10.972.383.018 (3)123
C4—H4A···N4i0.932.563.426 (4)155
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award. GB thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3117-o3118
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds