organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­phen­yl)-4-[2-(4-nitro­phen­yl)hydrazin­yl]furan-2(5H)-one

aCollege of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 20 October 2011; accepted 23 October 2011; online 29 October 2011)

In the title compound, C16H12BrN3O4, the furan-2(5H)-one ring forms a dihedral angle of 33.19 (9)° with the 4-bromo­benzene unit and is nearly perpendicular to the 4-nitro­benzene segment, making a dihedral angle of 89.93 (10)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules, generating an infinite chain along [010]. The chains are linked into a three-dimensional network by C—H⋯O, C—H⋯π and ππ contacts [centroid–centroid separation = 3.805 (2) Å].

Related literature

For background to 3-aryl­furan-2(5H)-ones as anti­bacterial agents, see: Xiao et al. (2011a[Xiao, Z.-P., He, X.-B., Peng, Z.-Y., Xiong, T.-J., Peng, J., Chen, L.-H. & Zhu, H.-L. (2011a). Bioorg. Med. Chem. 19, 1571-1579.],b[Xiao, Z.-P., Ouyang, H., Wang, X.-D., Lv, P.-C., Huang, Z.-J., Yu, S.-R., Yi, T.-F., Yang, Y.-L. & Zhu, H.-L. (2011b). Bioorg. Med. Chem. 19, 3884-3891.],c[Xiao, Z.-P., Ma, T.-W., Liao, M.-L., Feng, Y.-T., Peng, X.-C., Li, J.-L., Li, Z.-P., Wu, Y., Luo, Q., Deng, Y. & Zhu, H.-L. (2011c). Eur. J. Med. Chem. 46, 4904-4914.]). For further details of C—H⋯π inter­actions, see: Castillo et al. (2009[Castillo, J. C., Abonía, R., Cobo, J. & Glidewell, C. (2009). Acta Cryst. C65, o423-o430.]); Li et al. (2007[Li, X., Zhang, J., Liu, Y., Pan, M., Zheng, S., Kang, B. & Su, C. (2007). Inorg. Chim. Acta, 360, 2990-2996.]); Trilleras et al. (2009[Trilleras, J., Quiroga, J., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o134-o139.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BrN3O4

  • Mr = 390.20

  • Orthorhombic, P b c a

  • a = 14.4725 (11) Å

  • b = 6.7744 (5) Å

  • c = 31.310 (2) Å

  • V = 3069.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.71 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.498, Tmax = 0.614

  • 16108 measured reflections

  • 3022 independent reflections

  • 2039 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.02

  • 3022 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.80 (4) 2.13 (4) 2.913 (3) 163 (4)
N2—H2A⋯O2i 0.91 (3) 2.50 (3) 2.979 (3) 113 (2)
C9—H9B⋯O3ii 0.97 2.45 3.380 (4) 161
C2—H2⋯Cg3iii 0.93 2.86 3.676 (3) 147
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Furan-2(5H)-one framework is a part of many natural and synthetic compounds, which possess useful biological activities including anti-inflammatory and antitumor activity. Recently, we demostrated that 3-arylfuran-2(5H)-ones as antibacterial agent, some of which are potent tyrosyl t-RNA synthase inhibitors (Xiao et al., 2011a, 2011b and 2011c). Herein, we reported the crystal structure of the title compound (I) (Fig. 1).

The bond length of C7—C10 is 1.350 (4) Å and was assigned as a double bond, and the title compound was therefore identified as a furan-2(5H)-one (scheme 1). The torsion angle of N2—N1—C10—C7 is 174.8 (3) °, indicating that N1 may adopt sp2 hybridization. Therefore the p orbital of N1 is conjugated with the π molecular orbital of C7—C10 double bond, which shortens the N1—C10 bond from 1.48 Å to 1.341 (4) Å. However, the torsion angle of N1—N2—C11—C16 is 21.9 (4), indicating that N2 is unlikely to have sp2 hybridization. In fact, the angle of C11—N2—H2A, C11—N2—N1 and N1—N2—H2A are 114.83 (184), 110.30 (216) and 118.11 (24), respectively. These angles are in the range of 108 to 120 °, indicating that N2 may show a type of hybridization between sp2 and sp3. This resulted in a decrease of the overlap between the nitrogen (N2) and the benzene π-orbital and elongates the N2—C11 bond (1.393 (4) Å) in comparsion with N1—C10.

In the extended structure of I, a line of molecules is generated along the b axis through N1—H1A···O1 and N2—H2A···O2 hydrogen bonds characterized by a graph-set motif of R22(7) (Fig. 2). Utilizing the oxygen in the nitro group as acceptor, C—H···O hydrogen bonds link pairs of the resulted lines into centrosymmetric dimers, which are generated by edge fused graph-set motifs of R33(23) (Fig.2).

Adjacent dimeric lines are linked together via C2—H2···π contacts, forming an infinite two-dimensional layer parallel to the plane (001). The H···π length of the typical C—H···π hydrogen bond is in the range of 2.70 to 3.10 Å (Trilleras et al., 2009; Castillo, et al., 2009; Li, et al., 2007). C2—H2···π in compound I is thus considerated as a moderate contact with H···Cg length of 2.86 Å, where Cg is the centroid of C1 to C6 (Fig. 3). The resulted layers lie parallel to the plane (001), which are further linked to form its final three-dimensional network through ππ interactions with center-center length of 3.805 (2) Å (Fig. 4).

Related literature top

For background to 3-arylfuran-2(5H)-ones as antibacterial agents, see: Xiao et al. (2011a,b,c). For further details of C—H···π interactions, see: Castillo et al. (2009); Li et al. (2007); Trilleras et al. (2009).

Experimental top

3-(4-Bromophenyl)-4-hydroxyfuran-2(5H)-one (0.51 g, 2 mmol) was added to a mixture of 4-nitrophenylhydrazine (0.37 g, 2.4 mmol) and p-toluene sulphonic acid (13.6 mg, 0.08 mmol). The resulted mixture was heated to 375 K for 30 min. Fifteen ml of toluene was then added and refluxed for 7 h. After toluene was removed under reduced pressure, the residue was purified by column chromatography on silica gel, eluting with EtOAc/petroleum ether (v/v = 2/1), which was partially evaporated to give colorless blocks of (I).

Refinement top

The H atoms bonded to N1 and N2 were located in difference Fourier maps, and all other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å for aromatic H atoms and 0.97 Å for CH2 type H atoms, respectively. Uiso(H) values were set at 1.2 times Ueq(C) for both aromatic C and the CH2 group.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A dimeric line is formed through intermolecular N—H···O and C—H···O hydrogen bonds. For the sake of clarity, the H atoms have been omitted except that involving in hydrogen bonds.
[Figure 3] Fig. 3. A two-dimensional layer is generated through intermolecular C—H···π contacts. For the sake of clarity, the H atoms have been omitted except that involving in hydrogen bonds.
[Figure 4] Fig. 4. A three-dimensional network is finally formed through ππ interactions. For the sake of clarity, the H atoms have been omitted except that involving in hydrogen bonds.
3-(4-Bromophenyl)-4-[2-(4-nitrophenyl)hydrazinyl]furan-2(5H)-one top
Crystal data top
C16H12BrN3O4F(000) = 1568
Mr = 390.20Dx = 1.689 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1957 reflections
a = 14.4725 (11) Åθ = 2.3–24.6°
b = 6.7744 (5) ŵ = 2.71 mm1
c = 31.310 (2) ÅT = 296 K
V = 3069.8 (4) Å3Block, colorless
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3022 independent reflections
Radiation source: fine-focus sealed tube2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scanθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.498, Tmax = 0.614k = 87
16108 measured reflectionsl = 3835
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.6464P]
where P = (Fo2 + 2Fc2)/3
3022 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C16H12BrN3O4V = 3069.8 (4) Å3
Mr = 390.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.4725 (11) ŵ = 2.71 mm1
b = 6.7744 (5) ÅT = 296 K
c = 31.310 (2) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3022 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2039 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.614Rint = 0.046
16108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.58 e Å3
3022 reflectionsΔρmin = 0.63 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61747 (3)0.27111 (6)0.394041 (10)0.05931 (16)
C10.62850 (19)0.4835 (4)0.53598 (9)0.0311 (6)
C20.6776 (2)0.5813 (5)0.50422 (10)0.0429 (8)
H20.71310.69090.51140.051*
C30.6746 (2)0.5187 (5)0.46235 (10)0.0452 (8)
H3A0.70780.58510.44140.054*
C40.6220 (2)0.3580 (5)0.45199 (9)0.0390 (7)
C50.5723 (2)0.2560 (4)0.48239 (9)0.0407 (7)
H50.53710.14650.47490.049*
C60.5761 (2)0.3203 (4)0.52416 (9)0.0361 (7)
H60.54270.25290.54490.043*
C70.63070 (19)0.5525 (4)0.58069 (9)0.0316 (6)
C80.6358 (2)0.7596 (4)0.59231 (10)0.0389 (7)
C90.6233 (2)0.5875 (4)0.65466 (9)0.0407 (7)
H9A0.56530.57910.67010.049*
H9B0.67360.55810.67410.049*
C100.62402 (19)0.4491 (4)0.61743 (9)0.0329 (7)
C110.5150 (2)0.1371 (4)0.67875 (9)0.0326 (7)
C120.5037 (2)0.0240 (4)0.71579 (9)0.0368 (7)
H120.55520.02640.72980.044*
C130.4173 (2)0.0127 (4)0.73158 (9)0.0383 (7)
H130.40980.08710.75630.046*
C140.3413 (2)0.0617 (4)0.71039 (9)0.0352 (7)
C150.3506 (2)0.1675 (5)0.67330 (9)0.0399 (7)
H150.29860.21330.65890.048*
C160.4374 (2)0.2055 (4)0.65750 (9)0.0396 (7)
H160.44410.27740.63240.048*
H2A0.649 (2)0.101 (5)0.6741 (11)0.057 (11)*
N10.61816 (19)0.2544 (4)0.62466 (9)0.0414 (6)
N20.60423 (18)0.1894 (4)0.66655 (8)0.0368 (6)
N30.24976 (19)0.0297 (4)0.72818 (8)0.0421 (6)
O10.63888 (16)0.9067 (3)0.57072 (7)0.0497 (6)
O20.63469 (16)0.7778 (3)0.63613 (7)0.0464 (6)
O30.24263 (16)0.0574 (3)0.76267 (7)0.0525 (6)
O40.18281 (16)0.0904 (4)0.70812 (8)0.0560 (6)
H1A0.627 (2)0.175 (6)0.6061 (11)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0609 (3)0.0811 (3)0.0360 (2)0.0105 (2)0.00079 (16)0.01532 (18)
C10.0306 (15)0.0285 (15)0.0342 (15)0.0027 (13)0.0037 (12)0.0014 (12)
C20.0419 (18)0.0435 (19)0.0432 (18)0.0119 (15)0.0059 (15)0.0043 (15)
C30.046 (2)0.052 (2)0.0378 (17)0.0066 (17)0.0116 (15)0.0034 (16)
C40.0411 (18)0.0452 (19)0.0308 (16)0.0082 (15)0.0015 (14)0.0065 (14)
C50.0483 (19)0.0339 (17)0.0399 (17)0.0005 (15)0.0026 (14)0.0024 (15)
C60.0403 (18)0.0313 (16)0.0367 (16)0.0026 (14)0.0049 (13)0.0014 (13)
C70.0353 (16)0.0270 (15)0.0324 (15)0.0005 (12)0.0044 (13)0.0015 (12)
C80.0439 (18)0.0331 (18)0.0398 (17)0.0002 (14)0.0019 (13)0.0024 (15)
C90.056 (2)0.0332 (17)0.0332 (16)0.0017 (15)0.0021 (14)0.0028 (13)
C100.0310 (15)0.0302 (16)0.0373 (16)0.0018 (12)0.0035 (13)0.0052 (12)
C110.0422 (17)0.0234 (14)0.0321 (15)0.0007 (13)0.0022 (13)0.0043 (12)
C120.0414 (18)0.0335 (17)0.0356 (16)0.0032 (13)0.0064 (14)0.0046 (14)
C130.0475 (19)0.0344 (17)0.0331 (16)0.0005 (14)0.0004 (14)0.0046 (13)
C140.0371 (17)0.0340 (17)0.0346 (16)0.0010 (13)0.0005 (13)0.0043 (13)
C150.0419 (18)0.0434 (18)0.0343 (16)0.0065 (14)0.0102 (14)0.0022 (14)
C160.053 (2)0.0349 (17)0.0310 (15)0.0034 (15)0.0035 (14)0.0033 (13)
N10.0598 (17)0.0287 (15)0.0357 (14)0.0025 (13)0.0105 (13)0.0037 (11)
N20.0429 (16)0.0332 (14)0.0343 (14)0.0002 (12)0.0031 (12)0.0036 (12)
N30.0442 (16)0.0362 (15)0.0458 (15)0.0023 (12)0.0006 (14)0.0066 (13)
O10.0742 (17)0.0283 (12)0.0466 (13)0.0027 (11)0.0062 (12)0.0009 (10)
O20.0715 (16)0.0289 (12)0.0389 (12)0.0033 (11)0.0000 (11)0.0082 (9)
O30.0493 (14)0.0603 (15)0.0478 (14)0.0014 (12)0.0069 (11)0.0025 (12)
O40.0396 (13)0.0637 (16)0.0648 (15)0.0070 (12)0.0068 (12)0.0035 (13)
Geometric parameters (Å, º) top
Br1—C41.909 (3)C9—H9B0.9700
C1—C21.390 (4)C10—N11.341 (4)
C1—C61.391 (4)C11—C161.385 (4)
C1—C71.476 (4)C11—N21.393 (4)
C2—C31.379 (4)C11—C121.399 (4)
C2—H20.9300C12—C131.368 (4)
C3—C41.368 (4)C12—H120.9300
C3—H3A0.9300C13—C141.380 (4)
C4—C51.378 (4)C13—H130.9300
C5—C61.380 (4)C14—C151.371 (4)
C5—H50.9300C14—N31.453 (4)
C6—H60.9300C15—C161.374 (4)
C7—C101.350 (4)C15—H150.9300
C7—C81.451 (4)C16—H160.9300
C8—O11.205 (3)N1—N21.398 (4)
C8—O21.378 (4)N1—H1A0.80 (4)
C9—O21.423 (4)N2—H2A0.91 (3)
C9—C101.496 (4)N3—O41.226 (3)
C9—H9A0.9700N3—O31.235 (3)
C2—C1—C6117.9 (3)N1—C10—C9119.0 (3)
C2—C1—C7121.1 (3)C7—C10—C9109.8 (2)
C6—C1—C7121.1 (3)C16—C11—N2122.3 (3)
C3—C2—C1121.2 (3)C16—C11—C12119.1 (3)
C3—C2—H2119.4N2—C11—C12118.3 (3)
C1—C2—H2119.4C13—C12—C11120.4 (3)
C4—C3—C2119.2 (3)C13—C12—H12119.8
C4—C3—H3A120.4C11—C12—H12119.8
C2—C3—H3A120.4C12—C13—C14119.2 (3)
C3—C4—C5121.7 (3)C12—C13—H13120.4
C3—C4—Br1119.3 (2)C14—C13—H13120.4
C5—C4—Br1118.9 (2)C15—C14—C13121.3 (3)
C4—C5—C6118.4 (3)C15—C14—N3119.5 (3)
C4—C5—H5120.8C13—C14—N3119.2 (3)
C6—C5—H5120.8C14—C15—C16119.5 (3)
C5—C6—C1121.7 (3)C14—C15—H15120.2
C5—C6—H6119.2C16—C15—H15120.2
C1—C6—H6119.2C15—C16—C11120.4 (3)
C10—C7—C8107.0 (3)C15—C16—H16119.8
C10—C7—C1129.9 (3)C11—C16—H16119.8
C8—C7—C1123.0 (3)C10—N1—N2118.5 (3)
O1—C8—O2119.0 (3)C10—N1—H1A122 (3)
O1—C8—C7131.4 (3)N2—N1—H1A119 (3)
O2—C8—C7109.6 (3)C11—N2—N1118.1 (2)
O2—C9—C10104.4 (2)C11—N2—H2A115 (2)
O2—C9—H9A110.9N1—N2—H2A110 (2)
C10—C9—H9A110.9O4—N3—O3122.8 (3)
O2—C9—H9B110.9O4—N3—C14118.3 (3)
C10—C9—H9B110.9O3—N3—C14118.9 (3)
H9A—C9—H9B108.9C8—O2—C9109.0 (2)
N1—C10—C7131.2 (3)
C6—C1—C2—C30.1 (5)O2—C9—C10—C72.7 (3)
C7—C1—C2—C3179.1 (3)C16—C11—C12—C132.2 (4)
C1—C2—C3—C40.2 (5)N2—C11—C12—C13172.9 (3)
C2—C3—C4—C50.3 (5)C11—C12—C13—C140.5 (4)
C2—C3—C4—Br1179.9 (2)C12—C13—C14—C151.6 (5)
C3—C4—C5—C60.3 (5)C12—C13—C14—N3177.4 (3)
Br1—C4—C5—C6179.9 (2)C13—C14—C15—C161.9 (4)
C4—C5—C6—C10.1 (5)N3—C14—C15—C16177.1 (3)
C2—C1—C6—C50.0 (4)C14—C15—C16—C110.1 (4)
C7—C1—C6—C5179.0 (3)N2—C11—C16—C15173.0 (3)
C2—C1—C7—C10148.8 (3)C12—C11—C16—C151.9 (4)
C6—C1—C7—C1032.2 (5)C7—C10—N1—N2174.8 (3)
C2—C1—C7—C834.9 (4)C9—C10—N1—N25.0 (4)
C6—C1—C7—C8144.0 (3)C16—C11—N2—N121.9 (4)
C10—C7—C8—O1176.9 (3)C12—C11—N2—N1163.1 (2)
C1—C7—C8—O10.1 (5)C10—N1—N2—C1199.7 (3)
C10—C7—C8—O21.7 (3)C15—C14—N3—O43.7 (4)
C1—C7—C8—O2178.7 (3)C13—C14—N3—O4177.3 (3)
C8—C7—C10—N1179.4 (3)C15—C14—N3—O3176.5 (3)
C1—C7—C10—N13.8 (5)C13—C14—N3—O32.6 (4)
C8—C7—C10—C90.7 (3)O1—C8—O2—C9175.3 (3)
C1—C7—C10—C9176.0 (3)C7—C8—O2—C93.5 (3)
O2—C9—C10—N1177.4 (3)C10—C9—O2—C83.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.80 (4)2.13 (4)2.913 (3)163 (4)
N2—H2A···O2i0.91 (3)2.50 (3)2.979 (3)113 (2)
C9—H9B···O3ii0.972.453.380 (4)161
C2—H2···Cg3iii0.932.863.676 (3)147
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H12BrN3O4
Mr390.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)14.4725 (11), 6.7744 (5), 31.310 (2)
V3)3069.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.71
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.498, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
16108, 3022, 2039
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02
No. of reflections3022
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.63

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.80 (4)2.13 (4)2.913 (3)163 (4)
N2—H2A···O2i0.91 (3)2.50 (3)2.979 (3)113 (2)
C9—H9B···O3ii0.972.453.380 (4)161
C2—H2···Cg3iii0.932.863.676 (3)147
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z.
 

Acknowledgements

The work was financed by a project supported by the Hunan Provincial Natural Science Foundation of China (grant No. 11 J J3113), the Key Laboratory of Hunan Forest Products and Chemical Industry Engineering of Hunan Province (grant No. JDZ201102) and by an aid program for the Science and Technology Innovative Research Team (Chemicals of Forestry Resources and Development of Forest Products) in Higher Educational Institutions of Hunan Province.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastillo, J. C., Abonía, R., Cobo, J. & Glidewell, C. (2009). Acta Cryst. C65, o423–o430.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Zhang, J., Liu, Y., Pan, M., Zheng, S., Kang, B. & Su, C. (2007). Inorg. Chim. Acta, 360, 2990–2996.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrilleras, J., Quiroga, J., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o134–o139.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., He, X.-B., Peng, Z.-Y., Xiong, T.-J., Peng, J., Chen, L.-H. & Zhu, H.-L. (2011a). Bioorg. Med. Chem. 19, 1571–1579.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXiao, Z.-P., Ma, T.-W., Liao, M.-L., Feng, Y.-T., Peng, X.-C., Li, J.-L., Li, Z.-P., Wu, Y., Luo, Q., Deng, Y. & Zhu, H.-L. (2011c). Eur. J. Med. Chem. 46, 4904–4914.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXiao, Z.-P., Ouyang, H., Wang, X.-D., Lv, P.-C., Huang, Z.-J., Yu, S.-R., Yi, T.-F., Yang, Y.-L. & Zhu, H.-L. (2011b). Bioorg. Med. Chem. 19, 3884–3891.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds