organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Chloro­anilino)-3-phenyl­furan-2(5H)-one

aCollege of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 23 October 2011; accepted 24 October 2011; online 29 October 2011)

The title compound, C16H12ClNO2, featuring a furan-2(5H)-one (γ-butyrolactone) core, contains two mol­ecules (A and B) in the asymmetric unit, with different dihedral angles between the central ring and the pendant phenyl and chloro­benzene rings [43.33 (8) and 20.16 (8)°, respectively, for A, and 47.79 (8) and 13.87 (8)°, respectively, for B]. In the crystal, the A mol­ecules are linked into [001] chains by single C—H⋯O inter­actions. The B mol­ecules also form [001] chains, but their relative orientations in the chains are quite different to those of the A mol­ecules so that adjacent B mol­ecules are linked by two C—H⋯O hydrogen bonds. Finally, C—H⋯O inter­actions and aromatic ππ stacking contacts [centroid–centroid separations = 3.754 (1) and 3.817 (1) Å] link the chains into a two-dimensional array parallel to (010).

Related literature

For a related structure and background references, see: Xiao et al. (2011[Xiao, Z.-P., Yi, L.-C., Li, J.-L., Zhang, B. & Liao, M.-L. (2011). Acta Cryst. E57, o3086.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12ClNO2

  • Mr = 285.72

  • Monoclinic, P 21 /c

  • a = 7.7305 (5) Å

  • b = 27.4374 (18) Å

  • c = 12.6242 (9) Å

  • β = 92.145 (1)°

  • V = 2675.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.919, Tmax = 0.945

  • 32744 measured reflections

  • 6603 independent reflections

  • 5086 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 1.06

  • 6603 reflections

  • 370 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.47 3.305 (2) 149
C31—H31⋯O4ii 0.93 2.58 3.422 (2) 151
C32—H32⋯O3ii 0.93 2.48 3.305 (2) 148
C19—H19⋯Cg2iii 0.93 2.84 3.553 (2) 134
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of compounds with a γ-butyrolactone (furanone) core (Xiao et al., 2011), we now report the structure of the title compound, (I).

The crystal structure of the title compound, 4-(2-chlorophenylamino)-3-phenylfuran-2(5H)-one, contains two crystallographically independent molecules (Fig. 1) in an asymmetric unit with difference of bond length lower than 0.009 Å. In molecule A (from C1 to C16, O1, O2, N1 and Cl1), the central furan-2(5H)-one ring make a dihedral angles of 43.33 (8) and 20.16 (8) ° with the benzene ring and the o-chloroaniline ring, repectively. While in the molecule B (from C17 to C32, O3, O4, N2 and Cl2), they are 47.79 (8) and 13.87 (8) °, respectively. For the convenience of description, molecular structure was discussed based on A. Bond distance C7—C10 (1.3490 (19) Å) is indicative of a double bond, and the title compound was therefore identified as a furan-2(5H)-one.

Interestingly, molecule A and molecule B show different interemolecular hydrogen bonding patterns. For molecule A, an infinite one-dimensional line is formed by C—H···O hydrogen bondings (Fig 2a). While molecules B are linked into a line by R22(7) rings, which built from C31—H31···O4 and C32—H32···O3 hydrogen bonds centred at (0, 0, n) and (0, 0.0695, n) respectively, where n represents an integer (Fig. 2 b). Between the resulted lines, three kinds of intermolecular interactions were found and link molecules to further generate an infinite two-dimensional sheet. Of them, C—H···π occurs between C19 (in molecule B) and 3-benzene ring with "H···centroid" length of 2.840 Å, while ππ contacts occur between furanone rings and aniline rings with "centroid···centroid" lengths of 3.754 (1) and 3.817 (1) Å, respectively (Fig. 3a and Fig. 3 b).

Related literature top

For a related structure and background references, see: Xiao et al. (2011).

Experimental top

To a methanol solution (20 ml) of 2-methoxy-1-naphthaldehyde (0.1 mmol, 17.4 mg) and 4-methylbenzohydrazide (0.1 mmol, 15.0 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The white crystalline solid was collected by filtration, washed with cold methanol and dried in air. Single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The NH H-atom was located in a difference Fourier map and was refined with a distance restraint, N—H = 0.90 (1) \%A. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 and 0.96 \%A, for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. a. Molecules (A) form a one-dimensional line through intermolecular C—H···O hydrogen bonds. For the sake of clarity, the H atoms have been omitted except that involving in hydrogen bonds.
[Figure 3] Fig. 3. b. Molecules (B) form a one-dimensional line through intermolecular C—H···O hydrogen bonds. For the sake of clarity, the H atoms have been omitted except that involving in hydrogen bonds.
[Figure 4] Fig. 4. a. A two-dimensional sheet is formed by intermolecular C—H···π interactions and ππ contacts.
[Figure 5] Fig. 5. b. A two-dimensional sheet is formed by intermolecular C—H···π interactions and ππ contacts.
4-(2-Chloroanilino)-3-phenylfuran-2(5H)-one top
Crystal data top
C16H12ClNO2Z = 8
Mr = 285.72F(000) = 1184
Monoclinic, P21/cDx = 1.418 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.7305 (5) Åθ = 2.6–27.8°
b = 27.4374 (18) ŵ = 0.29 mm1
c = 12.6242 (9) ÅT = 298 K
β = 92.145 (1)°Block, colorless
V = 2675.8 (3) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6603 independent reflections
Radiation source: fine-focus sealed tube5086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ and ω scanθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.919, Tmax = 0.945k = 3636
32744 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.080P)2 + 0.1033P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6603 reflectionsΔρmax = 0.36 e Å3
370 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0084 (10)
Crystal data top
C16H12ClNO2V = 2675.8 (3) Å3
Mr = 285.72Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.7305 (5) ŵ = 0.29 mm1
b = 27.4374 (18) ÅT = 298 K
c = 12.6242 (9) Å0.30 × 0.20 × 0.20 mm
β = 92.145 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6603 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5086 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.945Rint = 0.096
32744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
6603 reflectionsΔρmin = 0.30 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27814 (18)0.35945 (5)0.29763 (10)0.0461 (3)
C20.3577 (2)0.34203 (6)0.20759 (12)0.0583 (4)
H20.36310.30860.19540.070*
C30.4284 (2)0.37386 (8)0.13655 (13)0.0682 (5)
H30.48000.36180.07660.082*
C40.4231 (2)0.42301 (7)0.15360 (13)0.0684 (5)
H40.47220.44420.10580.082*
C50.3450 (2)0.44111 (6)0.24147 (13)0.0609 (4)
H50.34130.47460.25290.073*
C60.27233 (19)0.40972 (5)0.31272 (11)0.0504 (3)
H60.21880.42230.37150.060*
C70.20474 (18)0.32524 (5)0.37337 (11)0.0475 (3)
C80.1029 (2)0.28279 (5)0.34135 (13)0.0608 (4)
C90.1273 (2)0.28158 (5)0.52194 (13)0.0578 (4)
H9A0.20960.26070.55990.069*
H9B0.03650.29060.56910.069*
C100.21487 (17)0.32582 (5)0.48027 (11)0.0454 (3)
C110.28478 (17)0.37210 (5)0.64825 (10)0.0457 (3)
C120.33208 (18)0.41894 (5)0.68118 (11)0.0500 (3)
C130.3164 (2)0.43397 (7)0.78420 (13)0.0656 (4)
H130.34840.46550.80380.079*
C140.2536 (2)0.40257 (8)0.85839 (13)0.0729 (5)
H140.24030.41290.92780.088*
C150.2108 (2)0.35592 (7)0.82878 (13)0.0681 (5)
H150.17110.33430.87910.082*
C160.2257 (2)0.34051 (6)0.72529 (12)0.0561 (4)
H160.19590.30870.70690.067*
C170.22903 (18)0.63216 (5)0.06184 (11)0.0487 (3)
C180.1337 (2)0.64534 (7)0.02958 (12)0.0626 (4)
H180.11550.67810.04520.075*
C190.0664 (2)0.61005 (9)0.09697 (13)0.0758 (6)
H190.00230.61930.15750.091*
C200.0925 (2)0.56142 (9)0.07617 (15)0.0782 (6)
H200.04680.53790.12230.094*
C210.1860 (2)0.54794 (7)0.01279 (15)0.0692 (5)
H210.20380.51500.02730.083*
C220.2544 (2)0.58261 (5)0.08146 (12)0.0554 (4)
H220.31830.57280.14160.066*
C230.29904 (19)0.66934 (5)0.13540 (11)0.0490 (3)
C240.3918 (2)0.71252 (6)0.10214 (13)0.0621 (4)
C250.3729 (2)0.71710 (5)0.28216 (12)0.0559 (4)
H25A0.28880.73790.31500.067*
H25B0.46610.71010.33350.067*
C260.29004 (18)0.67104 (5)0.24190 (11)0.0458 (3)
C270.21703 (17)0.62944 (5)0.41166 (11)0.0451 (3)
C280.16217 (18)0.58432 (5)0.44911 (12)0.0499 (3)
C290.1665 (2)0.57327 (6)0.55559 (14)0.0648 (4)
H290.12860.54300.57830.078*
C300.2268 (2)0.60706 (7)0.62796 (13)0.0708 (5)
H300.23210.59960.69990.085*
C310.2794 (2)0.65192 (7)0.59359 (13)0.0640 (4)
H310.31900.67500.64280.077*
C320.2744 (2)0.66332 (6)0.48734 (12)0.0548 (4)
H320.30980.69400.46580.066*
Cl10.40795 (6)0.460028 (15)0.58859 (4)0.06829 (15)
Cl20.09240 (6)0.540051 (15)0.35831 (4)0.06933 (16)
N10.30072 (17)0.35959 (5)0.54159 (10)0.0512 (3)
N20.21099 (18)0.63755 (5)0.30234 (10)0.0553 (3)
O10.05550 (19)0.26896 (4)0.25415 (10)0.0813 (4)
O20.05665 (17)0.25763 (4)0.42950 (10)0.0711 (3)
O30.4329 (2)0.72534 (4)0.01522 (10)0.0833 (4)
O40.43819 (18)0.73964 (4)0.18943 (10)0.0716 (3)
H10.354 (2)0.3800 (6)0.5078 (13)0.054 (4)*
H2A0.164 (2)0.6156 (6)0.2687 (14)0.061 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0511 (7)0.0492 (7)0.0377 (6)0.0074 (6)0.0023 (5)0.0037 (5)
C20.0671 (9)0.0633 (9)0.0442 (8)0.0156 (7)0.0002 (7)0.0096 (7)
C30.0691 (10)0.0927 (13)0.0437 (8)0.0134 (9)0.0127 (7)0.0060 (8)
C40.0713 (10)0.0840 (13)0.0506 (9)0.0060 (9)0.0108 (8)0.0071 (8)
C50.0717 (10)0.0574 (9)0.0538 (8)0.0063 (7)0.0037 (7)0.0001 (7)
C60.0591 (8)0.0521 (8)0.0401 (7)0.0035 (6)0.0037 (6)0.0043 (6)
C70.0551 (8)0.0409 (7)0.0464 (7)0.0075 (5)0.0001 (6)0.0039 (5)
C80.0805 (11)0.0430 (8)0.0585 (9)0.0052 (7)0.0026 (8)0.0088 (7)
C90.0736 (10)0.0434 (8)0.0565 (9)0.0004 (7)0.0014 (7)0.0026 (6)
C100.0498 (7)0.0411 (7)0.0455 (7)0.0071 (5)0.0028 (6)0.0014 (5)
C110.0437 (7)0.0534 (8)0.0399 (7)0.0039 (5)0.0008 (5)0.0001 (6)
C120.0482 (7)0.0535 (8)0.0481 (7)0.0027 (6)0.0014 (6)0.0021 (6)
C130.0693 (10)0.0725 (11)0.0545 (9)0.0040 (8)0.0057 (7)0.0160 (8)
C140.0790 (11)0.0965 (14)0.0434 (8)0.0055 (10)0.0022 (8)0.0121 (9)
C150.0726 (10)0.0881 (13)0.0440 (8)0.0045 (9)0.0078 (7)0.0088 (8)
C160.0619 (9)0.0595 (9)0.0472 (8)0.0006 (7)0.0053 (6)0.0040 (7)
C170.0500 (7)0.0552 (8)0.0411 (7)0.0031 (6)0.0045 (6)0.0018 (6)
C180.0627 (9)0.0801 (11)0.0451 (8)0.0156 (8)0.0036 (7)0.0056 (8)
C190.0630 (10)0.1212 (18)0.0428 (8)0.0052 (10)0.0054 (7)0.0056 (10)
C200.0736 (11)0.1020 (16)0.0588 (10)0.0176 (10)0.0018 (9)0.0241 (10)
C210.0794 (11)0.0623 (10)0.0662 (11)0.0134 (8)0.0068 (9)0.0119 (8)
C220.0615 (9)0.0550 (9)0.0493 (8)0.0023 (7)0.0016 (7)0.0003 (6)
C230.0588 (8)0.0424 (7)0.0458 (7)0.0057 (6)0.0017 (6)0.0049 (6)
C240.0901 (12)0.0408 (8)0.0559 (9)0.0046 (7)0.0109 (8)0.0076 (7)
C250.0767 (10)0.0398 (7)0.0513 (8)0.0004 (6)0.0055 (7)0.0003 (6)
C260.0509 (7)0.0409 (7)0.0454 (7)0.0032 (5)0.0005 (6)0.0032 (5)
C270.0447 (7)0.0465 (7)0.0442 (7)0.0031 (5)0.0024 (5)0.0026 (5)
C280.0472 (7)0.0479 (8)0.0550 (8)0.0042 (6)0.0071 (6)0.0025 (6)
C290.0677 (10)0.0620 (10)0.0655 (10)0.0057 (8)0.0139 (8)0.0197 (8)
C300.0814 (11)0.0846 (12)0.0469 (9)0.0096 (10)0.0076 (8)0.0123 (8)
C310.0689 (10)0.0760 (11)0.0469 (8)0.0049 (8)0.0009 (7)0.0058 (8)
C320.0633 (9)0.0528 (8)0.0482 (8)0.0000 (6)0.0008 (6)0.0000 (6)
Cl10.0816 (3)0.0550 (3)0.0685 (3)0.01316 (18)0.0057 (2)0.00081 (18)
Cl20.0762 (3)0.0517 (2)0.0803 (3)0.01332 (18)0.0058 (2)0.00368 (19)
N10.0619 (7)0.0526 (7)0.0397 (6)0.0100 (6)0.0081 (5)0.0016 (5)
N20.0683 (8)0.0554 (7)0.0419 (6)0.0165 (6)0.0028 (6)0.0001 (5)
O10.1134 (10)0.0628 (7)0.0665 (8)0.0094 (7)0.0115 (7)0.0203 (6)
O20.0986 (9)0.0456 (6)0.0688 (7)0.0136 (6)0.0024 (7)0.0031 (5)
O30.1370 (12)0.0537 (7)0.0611 (7)0.0046 (7)0.0279 (8)0.0119 (6)
O40.1118 (10)0.0415 (6)0.0624 (7)0.0131 (6)0.0159 (7)0.0007 (5)
Geometric parameters (Å, º) top
C1—C61.393 (2)C17—C221.395 (2)
C1—C21.3968 (19)C17—C231.469 (2)
C1—C71.469 (2)C18—C191.378 (3)
C2—C31.379 (3)C18—H180.9300
C2—H20.9300C19—C201.373 (3)
C3—C41.367 (3)C19—H190.9300
C3—H30.9300C20—C211.364 (3)
C4—C51.375 (2)C20—H200.9300
C4—H40.9300C21—C221.379 (2)
C5—C61.380 (2)C21—H210.9300
C5—H50.9300C22—H220.9300
C6—H60.9300C23—C261.3497 (19)
C7—C101.3490 (19)C23—C241.455 (2)
C7—C81.455 (2)C24—O31.2063 (19)
C8—O11.208 (2)C24—O41.367 (2)
C8—O21.368 (2)C25—O41.4323 (19)
C9—O21.4296 (19)C25—C261.4972 (19)
C9—C101.495 (2)C25—H25A0.9700
C9—H9A0.9700C25—H25B0.9700
C9—H9B0.9700C26—N21.3547 (18)
C10—N11.3637 (18)C27—C321.394 (2)
C11—C161.393 (2)C27—C281.3966 (19)
C11—C121.395 (2)C27—N21.3969 (18)
C11—N11.3995 (18)C28—C291.377 (2)
C12—C131.374 (2)C28—Cl21.7419 (16)
C12—Cl11.7415 (15)C29—C301.371 (3)
C13—C141.374 (3)C29—H290.9300
C13—H130.9300C30—C311.372 (3)
C14—C151.371 (3)C30—H300.9300
C14—H140.9300C31—C321.377 (2)
C15—C161.382 (2)C31—H310.9300
C15—H150.9300C32—H320.9300
C16—H160.9300N1—H10.824 (16)
C17—C181.393 (2)N2—H2A0.815 (17)
C6—C1—C2117.86 (14)C19—C18—H18119.8
C6—C1—C7121.89 (12)C17—C18—H18119.8
C2—C1—C7120.25 (13)C20—C19—C18121.00 (16)
C3—C2—C1120.65 (16)C20—C19—H19119.5
C3—C2—H2119.7C18—C19—H19119.5
C1—C2—H2119.7C21—C20—C19119.37 (17)
C4—C3—C2120.50 (15)C21—C20—H20120.3
C4—C3—H3119.7C19—C20—H20120.3
C2—C3—H3119.7C20—C21—C22120.64 (18)
C3—C4—C5120.00 (16)C20—C21—H21119.7
C3—C4—H4120.0C22—C21—H21119.7
C5—C4—H4120.0C21—C22—C17120.84 (15)
C4—C5—C6120.14 (16)C21—C22—H22119.6
C4—C5—H5119.9C17—C22—H22119.6
C6—C5—H5119.9C26—C23—C24107.68 (13)
C5—C6—C1120.84 (14)C26—C23—C17128.47 (13)
C5—C6—H6119.6C24—C23—C17123.84 (13)
C1—C6—H6119.6O3—C24—O4120.29 (15)
C10—C7—C8107.34 (13)O3—C24—C23130.52 (16)
C10—C7—C1129.37 (13)O4—C24—C23109.15 (13)
C8—C7—C1123.29 (13)O4—C25—C26104.26 (12)
O1—C8—O2120.20 (15)O4—C25—H25A110.9
O1—C8—C7130.33 (17)C26—C25—H25A110.9
O2—C8—C7109.45 (13)O4—C25—H25B110.9
O2—C9—C10104.48 (12)C26—C25—H25B110.9
O2—C9—H9A110.9H25A—C25—H25B108.9
C10—C9—H9A110.9C23—C26—N2125.37 (13)
O2—C9—H9B110.9C23—C26—C25109.27 (12)
C10—C9—H9B110.9N2—C26—C25125.29 (13)
H9A—C9—H9B108.9C32—C27—C28116.88 (13)
C7—C10—N1125.78 (13)C32—C27—N2124.67 (13)
C7—C10—C9109.41 (12)C28—C27—N2118.45 (13)
N1—C10—C9124.69 (12)C29—C28—C27121.94 (15)
C16—C11—C12117.02 (13)C29—C28—Cl2118.97 (12)
C16—C11—N1124.21 (14)C27—C28—Cl2119.06 (11)
C12—C11—N1118.76 (13)C30—C29—C28119.78 (15)
C13—C12—C11121.81 (15)C30—C29—H29120.1
C13—C12—Cl1119.00 (13)C28—C29—H29120.1
C11—C12—Cl1119.17 (11)C29—C30—C31119.56 (16)
C12—C13—C14120.18 (17)C29—C30—H30120.2
C12—C13—H13119.9C31—C30—H30120.2
C14—C13—H13119.9C30—C31—C32120.96 (17)
C15—C14—C13119.17 (16)C30—C31—H31119.5
C15—C14—H14120.4C32—C31—H31119.5
C13—C14—H14120.4C31—C32—C27120.86 (15)
C14—C15—C16121.04 (17)C31—C32—H32119.6
C14—C15—H15119.5C27—C32—H32119.6
C16—C15—H15119.5C10—N1—C11130.87 (13)
C15—C16—C11120.73 (16)C10—N1—H1114.2 (12)
C15—C16—H16119.6C11—N1—H1113.3 (12)
C11—C16—H16119.6C26—N2—C27131.72 (13)
C18—C17—C22117.82 (14)C26—N2—H2A114.2 (13)
C18—C17—C23120.94 (14)C27—N2—H2A113.2 (13)
C22—C17—C23121.24 (13)C8—O2—C9109.19 (12)
C19—C18—C17120.33 (17)C24—O4—C25109.52 (12)
C6—C1—C2—C30.2 (2)C23—C17—C22—C21179.00 (14)
C7—C1—C2—C3179.41 (14)C18—C17—C23—C26132.18 (16)
C1—C2—C3—C40.6 (2)C22—C17—C23—C2647.3 (2)
C2—C3—C4—C50.8 (3)C18—C17—C23—C2447.0 (2)
C3—C4—C5—C60.1 (3)C22—C17—C23—C24133.49 (16)
C4—C5—C6—C10.7 (2)C26—C23—C24—O3178.08 (19)
C2—C1—C6—C50.8 (2)C17—C23—C24—O32.6 (3)
C7—C1—C6—C5178.78 (13)C26—C23—C24—O40.26 (18)
C6—C1—C7—C1042.7 (2)C17—C23—C24—O4179.59 (13)
C2—C1—C7—C10136.91 (16)C24—C23—C26—N2178.94 (14)
C6—C1—C7—C8137.21 (15)C17—C23—C26—N20.3 (2)
C2—C1—C7—C843.2 (2)C24—C23—C26—C251.93 (17)
C10—C7—C8—O1176.81 (18)C17—C23—C26—C25177.36 (14)
C1—C7—C8—O13.1 (3)O4—C25—C26—C233.30 (17)
C10—C7—C8—O21.51 (17)O4—C25—C26—N2179.68 (13)
C1—C7—C8—O2178.58 (13)C32—C27—C28—C290.9 (2)
C8—C7—C10—N1179.36 (13)N2—C27—C28—C29179.05 (14)
C1—C7—C10—N10.7 (2)C32—C27—C28—Cl2178.93 (11)
C8—C7—C10—C93.25 (16)N2—C27—C28—Cl21.05 (18)
C1—C7—C10—C9176.85 (13)C27—C28—C29—C300.3 (2)
O2—C9—C10—C73.77 (16)Cl2—C28—C29—C30177.69 (13)
O2—C9—C10—N1179.94 (13)C28—C29—C30—C311.2 (3)
C16—C11—C12—C132.0 (2)C29—C30—C31—C320.8 (3)
N1—C11—C12—C13178.63 (14)C30—C31—C32—C270.5 (3)
C16—C11—C12—Cl1179.71 (10)C28—C27—C32—C311.3 (2)
N1—C11—C12—Cl10.30 (18)N2—C27—C32—C31178.65 (15)
C11—C12—C13—C140.4 (2)C7—C10—N1—C11160.68 (15)
Cl1—C12—C13—C14178.70 (13)C9—C10—N1—C1123.8 (2)
C12—C13—C14—C151.5 (3)C16—C11—N1—C1026.5 (2)
C13—C14—C15—C161.7 (3)C12—C11—N1—C10154.17 (14)
C14—C15—C16—C110.0 (3)C23—C26—N2—C27166.70 (15)
C12—C11—C16—C151.8 (2)C25—C26—N2—C2716.8 (3)
N1—C11—C16—C15178.88 (15)C32—C27—N2—C2618.0 (3)
C22—C17—C18—C190.6 (2)C28—C27—N2—C26161.96 (15)
C23—C17—C18—C19178.91 (14)O1—C8—O2—C9179.46 (16)
C17—C18—C19—C200.5 (3)C7—C8—O2—C90.95 (18)
C18—C19—C20—C210.2 (3)C10—C9—O2—C82.77 (17)
C19—C20—C21—C220.1 (3)O3—C24—O4—C25179.48 (17)
C20—C21—C22—C170.3 (3)C23—C24—O4—C252.43 (19)
C18—C17—C22—C210.5 (2)C26—C25—O4—C243.44 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.473.305 (2)149
C31—H31···O4ii0.932.583.422 (2)151
C32—H32···O3ii0.932.483.305 (2)148
C19—H19···Cg2iii0.932.843.553 (2)134
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12ClNO2
Mr285.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.7305 (5), 27.4374 (18), 12.6242 (9)
β (°) 92.145 (1)
V3)2675.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.919, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
32744, 6603, 5086
Rint0.096
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 1.06
No. of reflections6603
No. of parameters370
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.30

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.473.305 (2)149
C31—H31···O4ii0.932.583.422 (2)151
C32—H32···O3ii0.932.483.305 (2)148
C19—H19···Cg2iii0.932.843.553 (2)134
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The work was financed by a project supported by the Hunan Provincial Natural Science Foundation of China (grant No. 11 J J3113), by the Key Laboratory of Hunan Forest Products and Chemical Industry Engineering of Hunan Province (grant No. JDZ201102) and by an aid program for the Science and Technology Innovative Research Team (Chemicals of Forestry Resources and Development of Forest Products) in Higher Educational Institutions of Hunan Province.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Yi, L.-C., Li, J.-L., Zhang, B. & Liao, M.-L. (2011). Acta Cryst. E57, o3086.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds