organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(o-Tol­yl)piperazin-1-ium chloride

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal 576 104, India., cMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore, 575 025, India., and dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title mol­ecular salt, C11H17N2+·Cl, the piperazin-1-ium ring adopts a chair conformation with the aromatic ring in a pseudo-equatorial orientation. The dihedral angle between the benzene ring and the mean plane of the piperazin-1-ium ring is 51.22 (6)°. In the crystal, N—H⋯Cl hydrogen bonds link the mol­ecules into chains propagating in [100]. Weak C—H⋯π inter­actions also ocur.

Related literature

For the medicinal applications of piperazine derivatives, see: Amir et al. (2004[Amir, M., Khan, M. S. Y. & Zaman, M. S. (2004). Indian J. Chem. Sect. B, 43, 2189-2194.]); Omar & AboulWafa (1986[Omar, A.-M. M. E. & AboulWafa, O. M. (1986). J. Heterocycl. Chem. 23, 1339-1341.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Ben Gharbia et al. (2008[Ben Gharbia, I., Kefi, R., El Glaoui, M., Jeanneau, E. & Ben Nasr, C. (2008). Acta Cryst. E64, o1361.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17N2+·Cl

  • Mr = 212.72

  • Orthorhombic, P 21 21 21

  • a = 8.1572 (2) Å

  • b = 11.2821 (3) Å

  • c = 12.4256 (3) Å

  • V = 1143.53 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.54 × 0.33 × 0.23 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.854, Tmax = 0.936

  • 8246 measured reflections

  • 4871 independent reflections

  • 4172 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 0.95

  • 4871 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1943 Friedel pairs

  • Flack parameter: 0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl1i 0.87 2.26 3.1155 (10) 167
N1—H2N1⋯Cl1ii 0.87 2.23 3.0956 (10) 177
C3—H3ACg2iii 0.97 2.79 3.5342 (11) 134
Symmetry codes: (i) x+1, y+1, z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the past years considerable evidence has been accumulated to demonstrate the efficacy of piperazine derivatives possessing antibacterial and antimicrobial activities (Amir et al., 2004). For instance, Linezolid, Eperezolid, which are currently important antibiotics used for the treatment of microbial infections, contain the piperazine and morpholine ring in their structures (Omar & AboulWafa, 1986, El-Emam et al., 2004).

As shown in Fig. 1, the asymmetric unit of the title compound contains a 4-(o-tolyl)piperazin-1-ium cation and a chloride anion. The benzene (C5–C10) ring and the mean plane of 4-(o-tolyl) piperazin-1-ium (C1–C4) make a dihedral angle of 51.22 (6)°. The piperazin-1-ium (N1/N2/C1–C4) adopts a chair conformation with puckering parameters Q = 0.5859 (11) Å, θ = 173.86 (11)° and ϕ = 3.0 (11)° (Cremer & Pople, 1975). It is also noted that the geometric parameters [dav(C–N) = 1.4653 (13) Å and dav (C–C) = 1.5082 (16) Å for the 4-(o-tolyl)piperazin-1-ium moeity are in close agreement with those found in 4-(2,3-dimethylphenyl)piperazin-1-ium chloride monohydrate (Ben Gharbia et al., 2008).

In the crystal (Fig. 2), N1—H1N1···Cl1 and N1—H2N1···Cl1 hydrogen bonds (Table 1) link the molecules into chains along the a axis. In addition, the crystal packing features weak intermolecular C—H···π interactions involving the benzene (C5–C10 ; centroid Cg2) ring with a distance of 3.5342 (11) Å.

Related literature top

For the medicinal applications of piperazine derivatives, see: Amir et al. (2004); Omar & AboulWafa (1986); El-Emam et al. (2004). For conformational analysis, see: Cremer & Pople (1975). For a related structure, see: Ben Gharbia et al. (2008).

Experimental top

To a stirred solution of 2-flurotoluene (2g, 0.0181 mol) and anhydrous potassium carbonate (3.7g, 0.027 mol) in dry acetonitrile (20 ml), piperizine-1-carboxylic acid tert butyl ester (3.38g, 0.0181 mol) was added dropwise at RT and reaction mixture was stirred at RT for 5h. After the completion of reaction, the reaction mixture was filtered and the filtrate was concentrated. The product (5g) was then dissolved with HCl in dioxane (25 ml) and stirred at RT for 2 h. The reaction mixture was concentrated through high vacuum. The crude product was recrystallised from hot ethanol to afford title compound as colourless blocks (3.0g, 66%). M.p > 620K.

Refinement top

Atom H1N1 and H2N1 were located in a difference Fourier map and fixed to the positions with N–H = 0.8702 and 0.8662 Å. The remaining H atoms were positioned geometrically and refined using a riding modelwith C–H = 0.93–0.97 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. 1943 Freidel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing, viewed along the c axis, showing one-dimensional chains along the a axis. Hydrogen atoms that not involved in hydrogen bonding (dashed lines) are omitted for clarity.
4-(o-Tolyl)piperazin-1-ium chloride top
Crystal data top
C11H17N2+·ClF(000) = 456
Mr = 212.72Dx = 1.236 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3871 reflections
a = 8.1572 (2) Åθ = 2.4–35.1°
b = 11.2821 (3) ŵ = 0.30 mm1
c = 12.4256 (3) ÅT = 296 K
V = 1143.53 (5) Å3Block, colourless
Z = 40.54 × 0.33 × 0.23 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
4871 independent reflections
Radiation source: fine-focus sealed tube4172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 35.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 713
Tmin = 0.854, Tmax = 0.936k = 1018
8246 measured reflectionsl = 620
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0493P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
4871 reflectionsΔρmax = 0.23 e Å3
128 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1943 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C11H17N2+·ClV = 1143.53 (5) Å3
Mr = 212.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1572 (2) ŵ = 0.30 mm1
b = 11.2821 (3) ÅT = 296 K
c = 12.4256 (3) Å0.54 × 0.33 × 0.23 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
4871 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4172 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.936Rint = 0.016
8246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.23 e Å3
S = 0.95Δρmin = 0.19 e Å3
4871 reflectionsAbsolute structure: Flack (1983), 1943 Friedel pairs
128 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37470 (3)0.15197 (3)0.10255 (2)0.04298 (7)
N11.02356 (12)1.12619 (8)1.00673 (8)0.04027 (19)
H1N11.11421.14221.04070.048*
H2N10.98411.19000.97790.048*
N20.81569 (10)0.94027 (7)0.93398 (6)0.03177 (15)
C10.93463 (14)0.99338 (10)0.86053 (8)0.0381 (2)
H1A0.88391.05810.82140.046*
H1B0.97130.93470.80880.046*
C21.07872 (14)1.03893 (12)0.92397 (10)0.0461 (2)
H2A1.13370.97320.95900.055*
H2B1.15631.07650.87570.055*
C30.89107 (15)1.07704 (11)1.07575 (8)0.0427 (2)
H3A0.85021.13841.12340.051*
H3B0.93461.01341.11970.051*
C40.75240 (13)1.03055 (10)1.00711 (8)0.0380 (2)
H4A0.66790.99671.05260.046*
H4B0.70421.09490.96620.046*
C50.69593 (12)0.86761 (8)0.88251 (6)0.03052 (16)
C60.53332 (14)0.90410 (10)0.87004 (8)0.0382 (2)
H6A0.50150.97830.89510.046*
C70.41906 (15)0.83147 (12)0.82098 (9)0.0468 (3)
H7A0.31150.85710.81250.056*
C80.46538 (18)0.72070 (12)0.78461 (10)0.0507 (3)
H8A0.38950.67180.75070.061*
C90.62468 (18)0.68295 (10)0.79889 (9)0.0451 (2)
H9A0.65390.60760.77540.054*
C100.74324 (14)0.75387 (9)0.84727 (7)0.03504 (18)
C110.91432 (17)0.70764 (11)0.86458 (11)0.0482 (3)
H11A0.91170.62270.86910.072*
H11B0.95770.73960.93030.072*
H11C0.98270.73120.80540.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03237 (11)0.04279 (13)0.05376 (13)0.00052 (10)0.00001 (10)0.00279 (11)
N10.0329 (4)0.0355 (4)0.0524 (5)0.0008 (3)0.0083 (3)0.0036 (3)
N20.0313 (4)0.0318 (4)0.0322 (3)0.0009 (3)0.0029 (3)0.0031 (3)
C10.0336 (5)0.0428 (5)0.0377 (4)0.0050 (4)0.0063 (4)0.0029 (4)
C20.0295 (4)0.0507 (6)0.0580 (6)0.0033 (4)0.0039 (4)0.0098 (5)
C30.0469 (6)0.0424 (5)0.0388 (4)0.0020 (5)0.0015 (4)0.0088 (4)
C40.0343 (4)0.0393 (5)0.0404 (4)0.0028 (4)0.0055 (4)0.0101 (4)
C50.0328 (4)0.0306 (4)0.0282 (3)0.0023 (3)0.0012 (3)0.0013 (3)
C60.0340 (4)0.0396 (5)0.0410 (4)0.0005 (4)0.0011 (4)0.0005 (4)
C70.0363 (5)0.0571 (7)0.0470 (5)0.0074 (5)0.0054 (4)0.0010 (5)
C80.0522 (7)0.0509 (7)0.0489 (5)0.0197 (6)0.0047 (5)0.0018 (5)
C90.0574 (7)0.0347 (5)0.0433 (5)0.0106 (5)0.0040 (5)0.0040 (4)
C100.0425 (5)0.0295 (4)0.0331 (4)0.0009 (4)0.0021 (3)0.0016 (3)
C110.0518 (7)0.0381 (5)0.0548 (6)0.0117 (5)0.0019 (5)0.0026 (5)
Geometric parameters (Å, º) top
N1—C31.4869 (15)C4—H4B0.9700
N1—C21.4930 (15)C5—C61.3974 (14)
N1—H1N10.8702C5—C101.4098 (13)
N1—H2N10.8662C6—C71.3827 (16)
N2—C51.4267 (12)C6—H6A0.9300
N2—C41.4593 (12)C7—C81.382 (2)
N2—C11.4606 (13)C7—H7A0.9300
C1—C21.5056 (16)C8—C91.379 (2)
C1—H1A0.9700C8—H8A0.9300
C1—H1B0.9700C9—C101.3918 (16)
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—C111.5053 (17)
C3—C41.5107 (15)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—H4A0.9700
C3—N1—C2111.74 (9)C3—C4—H4A109.8
C3—N1—H1N1114.6N2—C4—H4B109.8
C2—N1—H1N1102.4C3—C4—H4B109.8
C3—N1—H2N1106.2H4A—C4—H4B108.3
C2—N1—H2N1112.0C6—C5—C10119.57 (9)
H1N1—N1—H2N1110.1C6—C5—N2122.03 (9)
C5—N2—C4115.97 (8)C10—C5—N2118.35 (9)
C5—N2—C1114.24 (7)C7—C6—C5120.94 (11)
C4—N2—C1109.74 (8)C7—C6—H6A119.5
N2—C1—C2109.36 (9)C5—C6—H6A119.5
N2—C1—H1A109.8C6—C7—C8119.73 (12)
C2—C1—H1A109.8C6—C7—H7A120.1
N2—C1—H1B109.8C8—C7—H7A120.1
C2—C1—H1B109.8C9—C8—C7119.67 (11)
H1A—C1—H1B108.3C9—C8—H8A120.2
N1—C2—C1110.51 (9)C7—C8—H8A120.2
N1—C2—H2A109.5C8—C9—C10122.20 (11)
C1—C2—H2A109.5C8—C9—H9A118.9
N1—C2—H2B109.5C10—C9—H9A118.9
C1—C2—H2B109.5C9—C10—C5117.86 (11)
H2A—C2—H2B108.1C9—C10—C11120.45 (10)
N1—C3—C4110.37 (8)C5—C10—C11121.65 (10)
N1—C3—H3A109.6C10—C11—H11A109.5
C4—C3—H3A109.6C10—C11—H11B109.5
N1—C3—H3B109.6H11A—C11—H11B109.5
C4—C3—H3B109.6C10—C11—H11C109.5
H3A—C3—H3B108.1H11A—C11—H11C109.5
N2—C4—C3109.21 (9)H11B—C11—H11C109.5
N2—C4—H4A109.8
C5—N2—C1—C2164.57 (9)C10—C5—C6—C71.76 (15)
C4—N2—C1—C263.23 (11)N2—C5—C6—C7179.23 (10)
C3—N1—C2—C153.08 (13)C5—C6—C7—C80.65 (17)
N2—C1—C2—N157.39 (13)C6—C7—C8—C90.87 (18)
C2—N1—C3—C453.24 (12)C7—C8—C9—C101.31 (18)
C5—N2—C4—C3165.32 (8)C8—C9—C10—C50.20 (16)
C1—N2—C4—C363.38 (11)C8—C9—C10—C11177.96 (11)
N1—C3—C4—N257.89 (12)C6—C5—C10—C91.32 (13)
C4—N2—C5—C622.41 (12)N2—C5—C10—C9178.88 (9)
C1—N2—C5—C6106.74 (10)C6—C5—C10—C11176.42 (10)
C4—N2—C5—C10155.10 (9)N2—C5—C10—C111.14 (13)
C1—N2—C5—C1075.76 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl1i0.872.263.1155 (10)167
N1—H2N1···Cl1ii0.872.233.0956 (10)177
C3—H3A···Cg2iii0.972.793.5342 (11)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+3/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H17N2+·Cl
Mr212.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.1572 (2), 11.2821 (3), 12.4256 (3)
V3)1143.53 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.54 × 0.33 × 0.23
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.854, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
8246, 4871, 4172
Rint0.016
(sin θ/λ)max1)0.816
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 0.95
No. of reflections4871
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19
Absolute structureFlack (1983), 1943 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl1i0.872.263.1155 (10)167
N1—H2N1···Cl1ii0.872.233.0956 (10)177
C3—H3A···Cg2iii0.972.793.5342 (11)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+3/2, y+2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SIJA thank Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/811151). AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy and Government of India, for the Young Scientist award.

References

First citationAmir, M., Khan, M. S. Y. & Zaman, M. S. (2004). Indian J. Chem. Sect. B, 43, 2189–2194.  Google Scholar
First citationBen Gharbia, I., Kefi, R., El Glaoui, M., Jeanneau, E. & Ben Nasr, C. (2008). Acta Cryst. E64, o1361.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOmar, A.-M. M. E. & AboulWafa, O. M. (1986). J. Heterocycl. Chem. 23, 1339–1341.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds