organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(2-Methoxynaphthalen-1-yl)methyl­­idene]-4-methyl­benzohydrazide

aHebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, People's Republic of China
*Correspondence e-mail: majingjun71@yahoo.cn

(Received 24 October 2011; accepted 24 October 2011; online 29 October 2011)

In the title compound, C20H18N2O2, the mean planes of the naphthyl system and the benzene ring form a dihedral angle of 88.48 (10)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains, which propagate along the b-axis direction.

Related literature

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011[El-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416-3424.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For coordination compounds of benzohydrazide compounds, see: El-Dissouky et al. (2010[El-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330-345.]); Zhang et al. (2010[Zhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the crystal structures of similar compounds, see: Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]); Liu et al. (2011[Liu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.]); Zhou et al. (2011[Zhou, X., Gao, S.-T. & Ma, J.-J. (2011). Acta Cryst. E67, o2275.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O2

  • Mr = 318.36

  • Orthorhombic, P n a 21

  • a = 26.738 (3) Å

  • b = 4.893 (2) Å

  • c = 12.735 (2) Å

  • V = 1666.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.985

  • 12400 measured reflections

  • 3622 independent reflections

  • 2579 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 1.03

  • 3622 reflections

  • 222 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.91 (1) 1.99 (1) 2.882 (2) 168 (4)
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzohydrazide compounds are well known for their biological activities (El-Sayed et al., 2011; Horiuchi et al., 2009). In addition, benzohydrazide compounds have also been used as versatile ligands in coordination chemistry (El-Dissouky et al., 2010, Zhang et al., 2010). As a contribution to a structural study on hydrazone compounds, we present here the crystal structure of the title compound, that was obtained as the product of the reaction of 2-methoxy-1-naphthaldehyde with 4-methylbenzohydrazide in methanol.

In the title compound, Fig. 1, the mean planes of the naphthyl ring and the benzene ring form a dihedral angle of 91.5 (3)°. The bond distances and angles are within normal ranges (Allen et al., 1987), and agree well with the corresponding bond distances and angles reported in closely related compounds (Suleiman Gwaram et al., 2010; Liu et al., 2011; Zhou et al., 2011).

In the crystal, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules to form chains which propagate along the b axis direction (Fig. 2).

Related literature top

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011); Horiuchi et al. (2009). For coordination compounds of benzohydrazide compounds, see: El-Dissouky et al. (2010); Zhang et al. (2010). For standard bond lengths, see: Allen et al. (1987). For the crystal structures of similar compounds, see: Suleiman Gwaram et al. (2010); Liu et al. (2011); Zhou et al. (2011).

Experimental top

To a methanol solution (20 ml) of 5-bromosalicylaldehyde (0.1 mmol, 20.1 mg) and 4-nitrobenzohydrazide (0.1 mmol, 18.1 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The white crystalline solid was collected by filtration, washed with cold methanol and dried in air. Colourless blocks were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The NH H-atom was located in a difference Fourier map and was refined with a distance restraint, N—H = 0.90 (1) Å, and Uiso(H) = 0.08 Å2. The OH and C-bound H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å, C—H = 0.93 and 0.96 Å, for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C) where k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the N—H···O hydrogen-bonds (dashed lines) forming the chains propagating in the b axis direction. H-atoms not involved in the hydrogen bonding have been omitted for clarity.
N'-[(2-Methoxynaphthalen-1-yl)methylidene]-4-methylbenzohydrazide top
Crystal data top
C20H18N2O2F(000) = 672
Mr = 318.36Dx = 1.269 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3061 reflections
a = 26.738 (3) Åθ = 2.7–24.6°
b = 4.893 (2) ŵ = 0.08 mm1
c = 12.735 (2) ÅT = 298 K
V = 1666.1 (8) Å3Block, colorless
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
3622 independent reflections
Radiation source: fine-focus sealed tube2579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scanθmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3234
Tmin = 0.984, Tmax = 0.985k = 66
12400 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.1245P]
where P = (Fo2 + 2Fc2)/3
3622 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C20H18N2O2V = 1666.1 (8) Å3
Mr = 318.36Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 26.738 (3) ŵ = 0.08 mm1
b = 4.893 (2) ÅT = 298 K
c = 12.735 (2) Å0.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
3622 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2579 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.985Rint = 0.047
12400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
3622 reflectionsΔρmin = 0.15 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39864 (7)0.4057 (4)0.22466 (14)0.0406 (4)
N20.37614 (7)0.3174 (3)0.31743 (15)0.0377 (4)
O10.50261 (6)0.0340 (4)0.11479 (13)0.0550 (4)
O20.37197 (6)0.7513 (3)0.37919 (14)0.0479 (4)
C10.44133 (8)0.2834 (5)0.06656 (17)0.0389 (5)
C20.48465 (9)0.1447 (5)0.04022 (17)0.0428 (6)
C30.50956 (9)0.1928 (6)0.05568 (19)0.0531 (7)
H30.53830.09530.07260.064*
C40.49103 (10)0.3836 (5)0.1231 (2)0.0553 (7)
H40.50800.41730.18560.066*
C50.44714 (10)0.5312 (5)0.10157 (17)0.0470 (6)
C60.42831 (12)0.7288 (6)0.1722 (2)0.0628 (8)
H60.44590.76620.23350.075*
C70.38510 (12)0.8652 (6)0.1524 (2)0.0654 (8)
H70.37340.99510.19970.079*
C80.35832 (11)0.8088 (6)0.0604 (2)0.0638 (7)
H80.32840.89960.04750.077*
C90.37556 (10)0.6224 (5)0.01051 (19)0.0519 (6)
H90.35710.58890.07100.062*
C100.42106 (9)0.4781 (5)0.00566 (17)0.0406 (5)
C110.54715 (10)0.1814 (5)0.0936 (2)0.0588 (7)
H11A0.54190.29910.03420.088*
H11B0.55590.28950.15370.088*
H11C0.57370.05550.07830.088*
C120.41801 (8)0.2176 (5)0.16793 (16)0.0392 (5)
H120.41730.03740.19110.047*
C130.36194 (8)0.5068 (4)0.38880 (16)0.0353 (5)
C140.33277 (8)0.4017 (4)0.47974 (16)0.0339 (5)
C150.29756 (8)0.1938 (5)0.46903 (18)0.0431 (6)
H150.29270.11210.40390.052*
C160.26982 (9)0.1080 (5)0.5540 (2)0.0520 (7)
H160.24610.02890.54480.062*
C170.27637 (10)0.2201 (5)0.6521 (2)0.0533 (6)
C180.31194 (10)0.4258 (5)0.6632 (2)0.0564 (7)
H180.31740.50290.72890.068*
C190.33931 (9)0.5176 (5)0.57820 (17)0.0471 (6)
H190.36230.65830.58710.056*
C200.24619 (14)0.1207 (8)0.7453 (3)0.0932 (12)
H20A0.21420.20930.74560.140*
H20B0.26370.16320.80900.140*
H20C0.24160.07350.74020.140*
H20.3739 (14)0.134 (2)0.327 (4)0.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0471 (11)0.0428 (11)0.0319 (9)0.0044 (9)0.0060 (9)0.0064 (9)
N20.0451 (10)0.0348 (10)0.0333 (9)0.0005 (8)0.0086 (8)0.0070 (8)
O10.0488 (9)0.0704 (11)0.0460 (9)0.0119 (8)0.0065 (8)0.0002 (9)
O20.0555 (10)0.0324 (8)0.0556 (10)0.0001 (7)0.0122 (8)0.0062 (8)
C10.0402 (13)0.0453 (13)0.0312 (11)0.0080 (11)0.0031 (9)0.0036 (10)
C20.0435 (14)0.0476 (14)0.0373 (12)0.0080 (11)0.0031 (11)0.0055 (11)
C30.0465 (14)0.0647 (18)0.0481 (15)0.0092 (12)0.0131 (12)0.0086 (13)
C40.0606 (16)0.0677 (16)0.0376 (13)0.0278 (14)0.0113 (13)0.0028 (14)
C50.0592 (16)0.0480 (13)0.0337 (12)0.0210 (12)0.0000 (11)0.0012 (11)
C60.082 (2)0.0661 (18)0.0405 (14)0.0274 (16)0.0026 (14)0.0111 (14)
C70.088 (2)0.0613 (17)0.0475 (16)0.0176 (17)0.0151 (15)0.0187 (14)
C80.0687 (18)0.0642 (18)0.0584 (17)0.0008 (15)0.0142 (15)0.0072 (15)
C90.0550 (16)0.0598 (16)0.0409 (14)0.0032 (14)0.0017 (12)0.0055 (13)
C100.0451 (13)0.0432 (12)0.0336 (11)0.0168 (11)0.0001 (10)0.0029 (11)
C110.0518 (15)0.0591 (16)0.0654 (17)0.0086 (13)0.0039 (13)0.0109 (14)
C120.0420 (12)0.0425 (13)0.0332 (11)0.0010 (10)0.0029 (10)0.0005 (11)
C130.0348 (11)0.0361 (12)0.0350 (12)0.0067 (9)0.0028 (9)0.0036 (10)
C140.0326 (11)0.0335 (11)0.0356 (11)0.0062 (9)0.0014 (9)0.0009 (10)
C150.0413 (13)0.0464 (14)0.0415 (13)0.0017 (11)0.0048 (11)0.0014 (11)
C160.0427 (15)0.0519 (15)0.0614 (18)0.0043 (12)0.0133 (12)0.0033 (14)
C170.0524 (15)0.0604 (16)0.0470 (15)0.0088 (13)0.0162 (12)0.0103 (13)
C180.0699 (17)0.0652 (17)0.0341 (12)0.0074 (14)0.0070 (13)0.0037 (12)
C190.0527 (15)0.0457 (13)0.0428 (13)0.0022 (11)0.0001 (12)0.0030 (12)
C200.100 (3)0.114 (3)0.066 (2)0.006 (2)0.0454 (18)0.0203 (19)
Geometric parameters (Å, º) top
N1—C121.280 (3)C8—H80.9300
N1—N21.394 (2)C9—C101.422 (3)
N2—C131.352 (3)C9—H90.9300
N2—H20.907 (10)C11—H11A0.9600
O1—C21.378 (3)C11—H11B0.9600
O1—C111.418 (3)C11—H11C0.9600
O2—C131.232 (2)C12—H120.9300
C1—C21.384 (3)C13—C141.488 (3)
C1—C101.431 (3)C14—C191.387 (3)
C1—C121.469 (3)C14—C151.393 (3)
C2—C31.411 (3)C15—C161.378 (3)
C3—C41.362 (4)C15—H150.9300
C3—H30.9300C16—C171.376 (4)
C4—C51.405 (4)C16—H160.9300
C4—H40.9300C17—C181.392 (4)
C5—C61.413 (4)C17—C201.515 (4)
C5—C101.430 (3)C18—C191.381 (3)
C6—C71.358 (4)C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.401 (4)C20—H20A0.9600
C7—H70.9300C20—H20B0.9600
C8—C91.364 (3)C20—H20C0.9600
C12—N1—N2115.47 (17)O1—C11—H11B109.5
C13—N2—N1118.57 (17)H11A—C11—H11B109.5
C13—N2—H2124 (3)O1—C11—H11C109.5
N1—N2—H2117 (3)H11A—C11—H11C109.5
C2—O1—C11119.0 (2)H11B—C11—H11C109.5
C2—C1—C10119.2 (2)N1—C12—C1120.7 (2)
C2—C1—C12117.4 (2)N1—C12—H12119.7
C10—C1—C12123.4 (2)C1—C12—H12119.7
O1—C2—C1115.8 (2)O2—C13—N2122.5 (2)
O1—C2—C3122.5 (2)O2—C13—C14121.80 (19)
C1—C2—C3121.6 (2)N2—C13—C14115.69 (18)
C4—C3—C2119.2 (2)C19—C14—C15118.19 (19)
C4—C3—H3120.4C19—C14—C13119.75 (19)
C2—C3—H3120.4C15—C14—C13122.04 (19)
C3—C4—C5122.2 (2)C16—C15—C14120.6 (2)
C3—C4—H4118.9C16—C15—H15119.7
C5—C4—H4118.9C14—C15—H15119.7
C4—C5—C6121.7 (2)C17—C16—C15121.6 (2)
C4—C5—C10118.7 (2)C17—C16—H16119.2
C6—C5—C10119.6 (2)C15—C16—H16119.2
C7—C6—C5121.4 (3)C16—C17—C18117.8 (2)
C7—C6—H6119.3C16—C17—C20121.0 (3)
C5—C6—H6119.3C18—C17—C20121.1 (3)
C6—C7—C8119.5 (3)C19—C18—C17121.2 (2)
C6—C7—H7120.2C19—C18—H18119.4
C8—C7—H7120.2C17—C18—H18119.4
C9—C8—C7120.9 (3)C18—C19—C14120.6 (2)
C9—C8—H8119.6C18—C19—H19119.7
C7—C8—H8119.6C14—C19—H19119.7
C8—C9—C10121.7 (2)C17—C20—H20A109.5
C8—C9—H9119.2C17—C20—H20B109.5
C10—C9—H9119.2H20A—C20—H20B109.5
C9—C10—C5116.8 (2)C17—C20—H20C109.5
C9—C10—C1124.2 (2)H20A—C20—H20C109.5
C5—C10—C1119.0 (2)H20B—C20—H20C109.5
O1—C11—H11A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.91 (1)1.99 (1)2.882 (2)168 (4)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H18N2O2
Mr318.36
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)26.738 (3), 4.893 (2), 12.735 (2)
V3)1666.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12400, 3622, 2579
Rint0.047
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.03
No. of reflections3622
No. of parameters222
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.907 (10)1.988 (14)2.882 (2)168 (4)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This project was sponsored by the Natural Development Foundation of Hebei Province (B2011204051), the Development Foundation of the Department of Education of Hebei Province (2010137) and the Research Development Foundation of the Agricultural University of Hebei.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330–345.  Web of Science CrossRef CAS Google Scholar
First citationEl-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416–3424.  Web of Science CAS PubMed Google Scholar
First citationHoriuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, X., Gao, S.-T. & Ma, J.-J. (2011). Acta Cryst. E67, o2275.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds