organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4-Di­chloro­phen­yl)-4-phenyl­benzo[h]quinoline

aDepartment of Aviation Oil and Materials, Xuzhou Airforce College, Xuzhou Jiangsu 221110, People's Republic of China, and bDepartment of Chemistry, Xuzhou Medical College, Xuzhou Jiangsu 221004, People's Republic of China
*Correspondence e-mail: wu.nanxuzhou@gmail.com

(Received 23 September 2011; accepted 29 September 2011; online 5 October 2011)

In the title compound, C25H15Cl2N, the benzo[h]quinoline system exhibits an approximately planar conformation with an r.m.s. deviation of 0.0202Å and a maximum deviation of 0.039 (1) Å. The aryl group at position 2 is nearly coplanar with the parent ring [dihedral angle = 6.68 (7)°] while the parent ring and the phenyl subsitituent at position 4 form a dihedral angle of 67.11 (4)°. Inter­molecular C—H⋯π inter­actions stabilize the crystal packing.

Related literature

For the uses of metal complexes of benzo[h]quinoline as electronic materials and organic electronic devices, see: Cho et al. (2010[Cho, Y. J., Kwon, H. J., Kim, B. O., Kim, S. M. & Yoon, S. S. (2010). Eur. Patent No. 2182002.]). For the medicinal uses of benzo[h]quinoline and its complexes, see: Pantoom et al. (2011[Pantoom, S., Vetter, I. R., Prinz, H. & Suginta, W. (2011). J. Biol. Chem. 286, 24312-24323.]); Liu et al. (2011[Liu, J., Leung, C.-H., Chow, A. L.-F., Sun, R. W.-Y., Yan, S.-C. & Che, C.-M. (2011). Chem. Commun. 47, 719-721.]). For the preparation of the title compound, see: Zhang et al. (2010[Zhang, Y., Li, P. & Wang, L. (2010). J. Heterocycl. Chem. 48, 153-157.]).

[Scheme 1]

Experimental

Crystal data
  • C25H15Cl2N

  • Mr = 400.28

  • Monoclinic, P 21 /c

  • a = 10.6066 (14) Å

  • b = 9.5667 (12) Å

  • c = 18.824 (2) Å

  • β = 94.264 (7)°

  • V = 1904.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.] Tmin = 0.933, Tmax = 0.959

  • 23687 measured reflections

  • 4523 independent reflections

  • 3630 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.07

  • 4523 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C20–C25, C14–C19 and N1/C1/C10–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.95 2.98 3.8577 (19) 154
C22—H22⋯Cg2ii 0.95 2.94 3.8204 (19) 156
C25—H25⋯Cg3iii 0.95 2.63 3.4738 (17) 148
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x, -y+2, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]; cell refinement: CrystalClear[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]; data reduction: CrystalClear[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzo[h]quinoline derivatives and their complexes can be used as electronic material and organic electronic device (Cho et al. ,2010), potent family-18 chitinase inhibitors (Pantoom et al., 2011), topoisomerase IIα poisons (Liu et al., 2011). Besides, They can also treat Alzheimer's disease. These properties arouse our interset in the relationship between their structures and activities. During the synthesis of benzo[h]quinoline derivatives, the title compound, (I) was isolated and its structure was determined by X-ray diffraction. Herein we shall report its crystal structure. The molecular structure of (I) is shown in Fig. 1. In the molecular structure, the benzo[h]quinoline exhibits a planar conformation with RMS of 0.0202Å and the largest deviation is 0.039 (1) Å. The 3,4-dichlorophenyl is almost coplanar with benzo[h]quinoline, since the dihedral angle between them is only 6.68 (7)°. The parent ring and the phenyl subsitituent at position 4 form a dihedral angle of 67.11 (4)°. In addition, there is a non-classical intramolecular hydrogen bond (C19—H19···N1). The crystal packing is stabilized by the intermolecular C—H···π interactions (Fig. 2, Table 1).

Related literature top

For the uses of metal complexes of benzo[h]quinoline as electronic materials and organic electronic devices, see: Cho et al. (2010). For the medicinal uses of benzo[h]quinoline and its complexes, see: Pantoom et al. (2011); Liu et al. (2011). For the preparation of the title compound, see: Zhang et al. (2010).

Experimental top

The title compound was synthesized according to the reported procedure (Zhang et al., 2010). Under an air atmosphere, a 10 ml of sealable reaction tube equipped with a magnetic stir bar was charged with an 3,4-dichlorobenzaldehyde (1.00 mmol), naphthalen-1-amine (1.00 mmol), and the mixture was heated and stirred in an oil bath at 333 K for 1 h. Then FeCl3 (16.2 mg, 0.10 mmol), ethynylbenzene (1.10 mmol) were added. The reaction mixture was then stirred in an oil bath at 393 K until the substrates were consumed completely (about 12 h), and then it was cooled to room temperature and the solvent was evaporated, the residue was purified by flash chromatography(hexane/AcOEt = 15:1) to afford the desired product.The single-crystal suitable for X-ray diffraction was obtained through the evaporation of ethanol solution.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95 Å, and included in the final cycles of refinement using a riding model, with Uĩso~(H) = 1.2U~eq~(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Cg1 is the centroid of the ring of C20/C21/C22/C23/C24/C25. Cg2 is the centroid of the ring of C14/C15/C16/C17/C18/C19. Cg3 is the centroid of the ring of N1/C1/C10/C11/C12/C13.
[Figure 2] Fig. 2. The packing diagram of (I).
2-(3,4-Dichlorophenyl)-4-phenylbenzo[h]quinoline top
Crystal data top
C25H15Cl2NF(000) = 824
Mr = 400.28Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6694 reflections
a = 10.6066 (14) Åθ = 1.9–27.9°
b = 9.5667 (12) ŵ = 0.35 mm1
c = 18.824 (2) ÅT = 113 K
β = 94.264 (7)°Prism, colorless
V = 1904.8 (4) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD
diffractometer
4523 independent reflections
Radiation source: rotating anode3630 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.045
Detector resolution: 14.22 pixels mm-1θmax = 27.8°, θmin = 1.9°
ω and ϕ scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 1212
Tmin = 0.933, Tmax = 0.959l = 2424
23687 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
4523 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C25H15Cl2NV = 1904.8 (4) Å3
Mr = 400.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6066 (14) ŵ = 0.35 mm1
b = 9.5667 (12) ÅT = 113 K
c = 18.824 (2) Å0.20 × 0.18 × 0.12 mm
β = 94.264 (7)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
4523 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
3630 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.959Rint = 0.045
23687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
4523 reflectionsΔρmin = 0.36 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52078 (4)0.42736 (4)1.09062 (2)0.03323 (13)
Cl20.56082 (4)0.57108 (5)1.24136 (2)0.03876 (14)
N10.09940 (11)0.64203 (12)0.98050 (6)0.0220 (3)
C10.00408 (13)0.66067 (15)0.93439 (8)0.0217 (3)
C20.00284 (14)0.59559 (15)0.86472 (8)0.0226 (3)
C30.10040 (15)0.51461 (17)0.84545 (8)0.0270 (4)
H30.17290.50430.87780.032*
C40.09621 (16)0.45062 (16)0.78003 (9)0.0310 (4)
H40.16560.39500.76780.037*
C50.00939 (16)0.46621 (17)0.73071 (9)0.0318 (4)
H50.01100.42100.68570.038*
C60.11019 (16)0.54695 (16)0.74773 (9)0.0292 (4)
H60.18070.55860.71410.035*
C70.10939 (14)0.61255 (16)0.81487 (8)0.0239 (3)
C80.21411 (14)0.69559 (16)0.83422 (8)0.0260 (3)
H80.28490.70730.80080.031*
C90.21506 (14)0.75764 (15)0.89867 (8)0.0264 (3)
H90.28530.81360.90920.032*
C100.11070 (13)0.73999 (15)0.95172 (8)0.0231 (3)
C110.10774 (14)0.79943 (15)1.02076 (8)0.0236 (3)
C120.00148 (14)0.78015 (16)1.06638 (8)0.0249 (3)
H120.00270.82061.11260.030*
C130.10125 (14)0.70060 (15)1.04485 (8)0.0229 (3)
C140.21694 (14)0.67568 (15)1.09325 (8)0.0231 (3)
C150.23628 (14)0.73938 (16)1.15973 (8)0.0291 (4)
H150.17610.80481.17450.035*
C160.34251 (14)0.70838 (17)1.20477 (8)0.0311 (4)
H160.35460.75291.24990.037*
C170.43053 (14)0.61299 (17)1.18414 (8)0.0276 (4)
C180.41328 (14)0.55001 (15)1.11722 (8)0.0250 (3)
C190.30761 (14)0.58159 (15)1.07252 (8)0.0238 (3)
H190.29670.53851.02700.029*
C200.21559 (14)0.88347 (16)1.04496 (8)0.0245 (3)
C210.33198 (14)0.82296 (18)1.05638 (9)0.0328 (4)
H210.34500.72601.04760.039*
C220.42876 (16)0.90333 (19)1.08044 (9)0.0361 (4)
H220.50780.86141.08810.043*
C230.41049 (16)1.04477 (17)1.09328 (9)0.0335 (4)
H230.47691.09961.11000.040*
C240.29624 (16)1.10611 (18)1.08182 (9)0.0330 (4)
H240.28421.20341.08990.040*
C250.19865 (15)1.02549 (16)1.05835 (8)0.0274 (4)
H250.11951.06781.05140.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0260 (2)0.0342 (2)0.0393 (3)0.01057 (17)0.00126 (18)0.00259 (18)
Cl20.0285 (2)0.0490 (3)0.0374 (3)0.00308 (19)0.00704 (18)0.0028 (2)
N10.0228 (7)0.0176 (6)0.0260 (7)0.0012 (5)0.0046 (5)0.0016 (5)
C10.0220 (8)0.0166 (7)0.0269 (8)0.0008 (6)0.0039 (6)0.0018 (6)
C20.0223 (8)0.0188 (7)0.0270 (8)0.0010 (6)0.0047 (6)0.0022 (6)
C30.0245 (8)0.0254 (8)0.0312 (9)0.0021 (7)0.0023 (7)0.0014 (7)
C40.0302 (9)0.0294 (9)0.0339 (9)0.0042 (7)0.0059 (7)0.0066 (7)
C50.0343 (9)0.0322 (9)0.0292 (9)0.0019 (8)0.0046 (7)0.0052 (7)
C60.0278 (9)0.0296 (9)0.0298 (9)0.0028 (7)0.0002 (7)0.0016 (7)
C70.0232 (8)0.0202 (8)0.0287 (8)0.0026 (6)0.0038 (6)0.0033 (6)
C80.0214 (8)0.0260 (8)0.0306 (8)0.0008 (6)0.0006 (6)0.0066 (7)
C90.0210 (7)0.0234 (8)0.0354 (9)0.0028 (6)0.0055 (7)0.0040 (7)
C100.0205 (7)0.0194 (7)0.0298 (8)0.0005 (6)0.0055 (6)0.0032 (6)
C110.0234 (8)0.0184 (7)0.0297 (8)0.0003 (6)0.0078 (6)0.0038 (6)
C120.0281 (8)0.0215 (8)0.0259 (8)0.0024 (6)0.0072 (6)0.0007 (6)
C130.0238 (8)0.0173 (7)0.0279 (8)0.0009 (6)0.0051 (6)0.0027 (6)
C140.0239 (8)0.0188 (7)0.0272 (8)0.0008 (6)0.0054 (6)0.0022 (6)
C150.0288 (9)0.0267 (8)0.0323 (9)0.0042 (7)0.0050 (7)0.0027 (7)
C160.0329 (9)0.0313 (9)0.0291 (9)0.0019 (7)0.0024 (7)0.0055 (7)
C170.0235 (8)0.0284 (9)0.0302 (9)0.0026 (7)0.0022 (7)0.0029 (7)
C180.0228 (8)0.0214 (8)0.0314 (9)0.0013 (6)0.0060 (7)0.0008 (7)
C190.0256 (8)0.0217 (8)0.0242 (8)0.0004 (6)0.0030 (6)0.0001 (6)
C200.0246 (8)0.0245 (8)0.0249 (8)0.0049 (6)0.0052 (6)0.0037 (6)
C210.0291 (9)0.0256 (9)0.0447 (10)0.0001 (7)0.0105 (8)0.0016 (7)
C220.0276 (9)0.0366 (10)0.0458 (11)0.0022 (8)0.0142 (8)0.0046 (8)
C230.0307 (9)0.0345 (10)0.0368 (10)0.0113 (8)0.0129 (7)0.0052 (8)
C240.0345 (9)0.0256 (9)0.0399 (10)0.0085 (7)0.0096 (8)0.0018 (7)
C250.0252 (8)0.0253 (8)0.0324 (9)0.0021 (7)0.0073 (7)0.0036 (7)
Geometric parameters (Å, º) top
Cl1—C181.7356 (15)C12—C131.413 (2)
Cl2—C171.7347 (16)C12—H120.9500
N1—C131.3334 (18)C13—C141.492 (2)
N1—C11.3595 (19)C14—C151.393 (2)
C1—C101.420 (2)C14—C191.394 (2)
C1—C21.453 (2)C15—C161.391 (2)
C2—C31.411 (2)C15—H150.9500
C2—C71.423 (2)C16—C171.382 (2)
C3—C41.373 (2)C16—H160.9500
C3—H30.9500C17—C181.396 (2)
C4—C51.409 (2)C18—C191.384 (2)
C4—H40.9500C19—H190.9500
C5—C61.376 (2)C20—C251.391 (2)
C5—H50.9500C20—C211.395 (2)
C6—C71.411 (2)C21—C221.385 (2)
C6—H60.9500C21—H210.9500
C7—C81.435 (2)C22—C231.386 (2)
C8—C91.351 (2)C22—H220.9500
C8—H80.9500C23—C241.378 (2)
C9—C101.444 (2)C23—H230.9500
C9—H90.9500C24—C251.389 (2)
C10—C111.417 (2)C24—H240.9500
C11—C121.378 (2)C25—H250.9500
C11—C201.497 (2)
C13—N1—C1118.79 (12)N1—C13—C14116.32 (13)
N1—C1—C10122.84 (14)C12—C13—C14121.84 (14)
N1—C1—C2117.34 (13)C15—C14—C19118.38 (14)
C10—C1—C2119.82 (13)C15—C14—C13122.55 (14)
C3—C2—C7119.10 (14)C19—C14—C13119.04 (14)
C3—C2—C1121.79 (14)C16—C15—C14120.85 (14)
C7—C2—C1119.10 (13)C16—C15—H15119.6
C4—C3—C2120.10 (14)C14—C15—H15119.6
C4—C3—H3119.9C17—C16—C15120.21 (15)
C2—C3—H3119.9C17—C16—H16119.9
C3—C4—C5121.00 (15)C15—C16—H16119.9
C3—C4—H4119.5C16—C17—C18119.52 (14)
C5—C4—H4119.5C16—C17—Cl2120.12 (12)
C6—C5—C4119.97 (15)C18—C17—Cl2120.36 (12)
C6—C5—H5120.0C19—C18—C17120.01 (14)
C4—C5—H5120.0C19—C18—Cl1119.47 (12)
C5—C6—C7120.35 (15)C17—C18—Cl1120.48 (12)
C5—C6—H6119.8C18—C19—C14121.01 (14)
C7—C6—H6119.8C18—C19—H19119.5
C6—C7—C2119.45 (14)C14—C19—H19119.5
C6—C7—C8121.38 (14)C25—C20—C21118.78 (14)
C2—C7—C8119.18 (14)C25—C20—C11119.24 (14)
C9—C8—C7121.92 (14)C21—C20—C11121.95 (14)
C9—C8—H8119.0C22—C21—C20120.39 (16)
C7—C8—H8119.0C22—C21—H21119.8
C8—C9—C10120.86 (14)C20—C21—H21119.8
C8—C9—H9119.6C21—C22—C23120.11 (16)
C10—C9—H9119.6C21—C22—H22119.9
C11—C10—C1117.49 (13)C23—C22—H22119.9
C11—C10—C9123.43 (13)C24—C23—C22120.12 (15)
C1—C10—C9119.08 (14)C24—C23—H23119.9
C12—C11—C10118.65 (13)C22—C23—H23119.9
C12—C11—C20119.37 (14)C23—C24—C25119.88 (16)
C10—C11—C20121.98 (13)C23—C24—H24120.1
C11—C12—C13120.39 (14)C25—C24—H24120.1
C11—C12—H12119.8C24—C25—C20120.71 (15)
C13—C12—H12119.8C24—C25—H25119.6
N1—C13—C12121.83 (13)C20—C25—H25119.6
C13—N1—C1—C100.0 (2)C1—N1—C13—C14179.61 (12)
C13—N1—C1—C2179.91 (13)C11—C12—C13—N10.0 (2)
N1—C1—C2—C30.8 (2)C11—C12—C13—C14179.01 (13)
C10—C1—C2—C3179.29 (14)N1—C13—C14—C15174.74 (13)
N1—C1—C2—C7179.98 (13)C12—C13—C14—C156.2 (2)
C10—C1—C2—C70.1 (2)N1—C13—C14—C197.5 (2)
C7—C2—C3—C41.5 (2)C12—C13—C14—C19171.63 (14)
C1—C2—C3—C4177.67 (14)C19—C14—C15—C160.9 (2)
C2—C3—C4—C51.1 (2)C13—C14—C15—C16176.90 (14)
C3—C4—C5—C60.2 (2)C14—C15—C16—C170.3 (2)
C4—C5—C6—C71.0 (2)C15—C16—C17—C181.2 (2)
C5—C6—C7—C20.6 (2)C15—C16—C17—Cl2178.31 (13)
C5—C6—C7—C8179.10 (15)C16—C17—C18—C191.0 (2)
C3—C2—C7—C60.7 (2)Cl2—C17—C18—C19178.52 (11)
C1—C2—C7—C6178.51 (13)C16—C17—C18—Cl1178.77 (12)
C3—C2—C7—C8179.61 (14)Cl2—C17—C18—Cl10.77 (19)
C1—C2—C7—C81.2 (2)C17—C18—C19—C140.2 (2)
C6—C7—C8—C9179.24 (15)Cl1—C18—C19—C14177.60 (12)
C2—C7—C8—C90.4 (2)C15—C14—C19—C181.1 (2)
C7—C8—C9—C101.4 (2)C13—C14—C19—C18176.76 (13)
N1—C1—C10—C111.0 (2)C12—C11—C20—C2565.91 (19)
C2—C1—C10—C11179.08 (13)C10—C11—C20—C25113.34 (17)
N1—C1—C10—C9178.24 (13)C12—C11—C20—C21112.36 (17)
C2—C1—C10—C91.7 (2)C10—C11—C20—C2168.4 (2)
C8—C9—C10—C11178.35 (14)C25—C20—C21—C220.2 (2)
C8—C9—C10—C12.5 (2)C11—C20—C21—C22178.44 (15)
C1—C10—C11—C121.5 (2)C20—C21—C22—C230.1 (3)
C9—C10—C11—C12177.71 (14)C21—C22—C23—C240.3 (3)
C1—C10—C11—C20179.25 (13)C22—C23—C24—C250.9 (3)
C9—C10—C11—C201.5 (2)C23—C24—C25—C201.2 (2)
C10—C11—C12—C131.1 (2)C21—C20—C25—C240.8 (2)
C20—C11—C12—C13179.67 (13)C11—C20—C25—C24179.11 (14)
C1—N1—C13—C120.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C20–C25, C14–C19 and N1/C1/C10–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.952.983.8577 (19)154
C22—H22···Cg2ii0.952.943.8204 (19)156
C25—H25···Cg3iii0.952.633.4738 (17)148
C19—H19···N10.952.422.765 (2)101
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z; (iii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC25H15Cl2N
Mr400.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.6066 (14), 9.5667 (12), 18.824 (2)
β (°) 94.264 (7)
V3)1904.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.933, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
23687, 4523, 3630
Rint0.045
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.07
No. of reflections4523
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.36

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C20–C25, C14–C19 and N1/C1/C10–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.952.983.8577 (19)154.0
C22—H22···Cg2ii0.952.943.8204 (19)156.0
C25—H25···Cg3iii0.952.633.4738 (17)148.0
C19—H19···N10.952.422.765 (2)101.1
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z; (iii) x, y+2, z+2.
 

Acknowledgements

We are grateful to the Special Presidential Foundation of Xuzhou Medical College (2010KJZ15) for financial support.

References

First citationCho, Y. J., Kwon, H. J., Kim, B. O., Kim, S. M. & Yoon, S. S. (2010). Eur. Patent No. 2182002.  Google Scholar
First citationLiu, J., Leung, C.-H., Chow, A. L.-F., Sun, R. W.-Y., Yan, S.-C. & Che, C.-M. (2011). Chem. Commun. 47, 719–721.  Web of Science CrossRef CAS Google Scholar
First citationPantoom, S., Vetter, I. R., Prinz, H. & Suginta, W. (2011). J. Biol. Chem. 286, 24312–24323.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Li, P. & Wang, L. (2010). J. Heterocycl. Chem. 48, 153–157.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds