organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-3-phenyl­quinoxalin-2(1H)-one

aLaboratoire de Chimie Organique Hétérocyclique, Faculté des Sciences, Av. Ibn Battouta, BP 1014 Rabat, Morocco, bMoroccan Advanced Science, Innovation and Research (MASCIR) Foundation – INANOTECH, ENSET, Av. de l'Armée Royale, Madinat El Irfane 10100 Rabat, Morocco, and cLaboratoire de Chimie Physique et Minérale, EA4138 Pharmacochimie, Université Victor Ségalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
*Correspondence e-mail: gbouhfid@yahoo.fr

(Received 23 September 2011; accepted 13 October 2011; online 22 October 2011)

The title compound, C17H14N2O, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the mean planes of the quinoxaline ring system and the phenyl ring in the two mol­ecules are 38.27 (10) and 37.14 (8)°. In the crystal, π-stacking along the b axis contributes to the crystal cohesion with an average distance between quinoxaline units of 3.397 (3) Å. Weak C—H⋯O interactions also occur.

Related literature

For the crystal structure of 1-benzyl-3-phenyl­quinoxalin-2(1H)-one, see: Benzeid et al. (2009[Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685.]). For the biological activity of quinoxaline derivatives, see: Yan et al. (2007[Yan, L., Liu, F. W., Dai, G. F. & Liu, H. M. (2007). Bioorg. Med. Chem. Lett. 17, 609-612.]); Khan et al. (2008[Khan, S. A., Saleem, K. & Khan, Z. (2008). Eur. J. Med. Chem. 43, 2257-2261.]); Tandon et al. (2006[Tandon, V. K., Yadav, D. B., Maurya, H. K., Chaturvedi, A. K. & Shukla, P. K. (2006). Bioorg. Med. Chem. 14, 6120-6126.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O

  • Mr = 262.30

  • Monoclinic, P 21 /c

  • a = 15.123 (2) Å

  • b = 7.039 (1) Å

  • c = 26.405 (3) Å

  • β = 95.25 (1)°

  • V = 2799.0 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 296 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.912, Tmax = 0.940

  • 5103 measured reflections

  • 5103 independent reflections

  • 4037 reflections with I > 2σ(I)

  • 2 standard reflections every 90 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.152

  • S = 1.05

  • 5103 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O67i 0.93 2.60 3.360 (2) 140
C68—H68B⋯O67ii 0.97 2.56 3.383 (2) 143
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In common with other nitrogen heterocycles, quinoxalines, as well as their fused-ring bioisosteric analogs, show marked activity in many biological systems. Different quinoxaline activities are known: antibacterial (Khan et al. 2008), antitumoral (Yan et al. 2007), antiviral, and antifungal (Tandon et al. 2006). In this work, 1-allyl-3-phenylquinoxalin-2(1H)-one have been prepared by alkylation of the 3-phenylquinoxalin-2(1H)-one according to the following method described by (Benzeid et al. 2009).

The crystal structure of the title compound showed two independent molecules in the unit cell. Indeed, differences between both molecules have been noticed. Thus, torsion angles precise conformational differences as following: C1—C6—C7—N12 [36.6 (2)°] versus C51—C56—C57—N62 [-35.7 (2)°] for the angle between phenyl group and quinoxaline core; C8—N9—C18—C19 [90.7 (2)°] versus C58—N59—C68—C69 [-91.8 (2)°] for the angle between heterocycle and allyl chain. π-stacking along b axis participated to the crystal cohesion with an average distance between quinoxaline moieties found at 3.397 (3) Å.

Related literature top

For the crystal structure of 1-benzyl-3-phenylquinoxalin-2(1H)-one, see: Benzeid et al. (2009). For the biological activity of quinoxaline derivatives, see: Yan et al. (2007); Khan et al. (2008); Tandon et al. (2006).

Experimental top

To a solution of 3-phenylquinoxalin-2(1H)-one (1 g, 4.5 mmol) in dimethylformamide (20 ml), was added allylbromide (0.5 ml, 6.75 mmol), K2CO3 (1 g, 7.46 mmol) and a catalytic quantity of tetrabutylammoniumbromide. The mixture was stirred at room temperature for 12 h. The solution was filtred to remove the salts. The solvent was removed under reduced pressure. The residue was crystallized in ethanol to afford the title compound as colourless crystals. Yield: 90%, Mp: 98°C. 1H NMR (CDCl3): δ (p.p.m.) 5.02 (dd, 2H, NCH2, J=5.2 Hz); 5.29 (m, 2H,=CH2); 6.03 (m, 1H, =CH); 7.34–8.38 (m, 9H, HAr). 13C NMR (CDCl3): δ (p.p.m.) 44.8 (NCH2); 103.3 (=CH2); 130.7 (=CH); 114.1, 118.2, 123.7, 2×128.1, 2×129.6, 130.2, 130.4, 130.6, (CHAr); 132.6 136.0, 139.1, 155.0, 154.3 (Cq). Mass spectra (FAB): M+1= 263.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate hydrogen bonds intermolecular interactions.
1-allyl-3-phenylquinoxalin-2(1H)-one top
Crystal data top
C17H14N2OF(000) = 1104
Mr = 262.30Dx = 1.245 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 15.123 (2) Åθ = 25–35°
b = 7.039 (1) ŵ = 0.63 mm1
c = 26.405 (3) ÅT = 296 K
β = 95.25 (1)°Prism, colourless
V = 2799.0 (6) Å30.15 × 0.15 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
4037 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 69.1°, θmin = 2.9°
ω–2θ scansh = 1717
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.912, Tmax = 0.940l = 031
5103 measured reflections2 standard reflections every 90 min
5103 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.5467P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5103 reflectionsΔρmax = 0.29 e Å3
362 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0206 (9)
Crystal data top
C17H14N2OV = 2799.0 (6) Å3
Mr = 262.30Z = 8
Monoclinic, P21/cCu Kα radiation
a = 15.123 (2) ŵ = 0.63 mm1
b = 7.039 (1) ÅT = 296 K
c = 26.405 (3) Å0.15 × 0.15 × 0.10 mm
β = 95.25 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5103 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
4037 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.940Rint = 0.000
5103 measured reflections2 standard reflections every 90 min
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
5103 reflectionsΔρmin = 0.18 e Å3
362 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53711 (15)0.0487 (3)0.19852 (7)0.0779 (6)
H10.48700.02480.20230.094*
C20.6140 (2)0.0172 (5)0.22999 (8)0.1057 (9)
H20.61590.07930.25410.127*
C30.68679 (18)0.1276 (6)0.22558 (9)0.1188 (12)
H30.73840.10680.24690.143*
C40.68431 (17)0.2694 (5)0.18987 (10)0.1122 (11)
H40.73390.34580.18760.135*
C50.60822 (14)0.3001 (4)0.15703 (8)0.0856 (7)
H50.60740.39480.13240.103*
C60.53387 (13)0.1889 (3)0.16129 (6)0.0626 (5)
C70.44965 (12)0.2171 (2)0.12875 (6)0.0516 (4)
C80.45288 (11)0.2599 (2)0.07394 (6)0.0511 (4)
N90.37227 (9)0.28628 (18)0.04643 (5)0.0474 (3)
C100.29209 (11)0.2635 (2)0.06810 (6)0.0468 (4)
C110.29671 (11)0.2184 (2)0.11994 (6)0.0494 (4)
N120.37588 (10)0.1971 (2)0.14947 (5)0.0538 (4)
C130.20971 (12)0.2829 (2)0.04048 (7)0.0563 (4)
H130.20630.31100.00590.068*
C140.13319 (12)0.2604 (3)0.06447 (8)0.0627 (5)
H140.07830.27460.04600.075*
C150.13697 (13)0.2169 (3)0.11567 (8)0.0666 (5)
H150.08480.20260.13140.080*
C160.21700 (13)0.1950 (3)0.14295 (7)0.0614 (5)
H160.21910.16420.17730.074*
O170.52268 (8)0.2704 (2)0.05356 (5)0.0683 (4)
C180.37354 (12)0.3401 (2)0.00747 (6)0.0530 (4)
H18A0.42680.41350.01140.064*
H18B0.32280.42080.01710.064*
C190.37126 (11)0.1735 (3)0.04244 (6)0.0555 (4)
H190.40710.06980.03290.067*
C200.32244 (17)0.1645 (4)0.08524 (8)0.0908 (7)
H20A0.28590.26590.09580.109*
H20B0.32390.05650.10550.109*
C510.02175 (13)0.5804 (3)0.19425 (6)0.0662 (5)
H510.07160.50340.20000.079*
C520.04667 (17)0.5651 (4)0.22526 (8)0.0871 (7)
H520.04330.47580.25130.105*
C530.11933 (16)0.6806 (4)0.21785 (8)0.0922 (8)
H530.16530.66950.23880.111*
C540.12451 (14)0.8130 (4)0.17954 (8)0.0839 (7)
H540.17320.89390.17530.101*
C550.05793 (12)0.8269 (3)0.14731 (7)0.0662 (5)
H550.06280.91440.12080.079*
C560.01625 (11)0.7106 (2)0.15442 (6)0.0520 (4)
C570.09147 (11)0.7266 (2)0.12226 (5)0.0458 (4)
C580.07103 (11)0.7620 (2)0.06709 (6)0.0465 (4)
N590.14374 (9)0.78782 (17)0.04012 (4)0.0450 (3)
C600.22977 (11)0.7662 (2)0.06215 (6)0.0446 (4)
C610.24194 (11)0.7235 (2)0.11437 (6)0.0463 (4)
N620.17106 (9)0.70576 (19)0.14366 (5)0.0487 (3)
C630.30435 (12)0.7846 (2)0.03487 (6)0.0529 (4)
H630.29720.81180.00030.063*
C640.38777 (12)0.7626 (3)0.05887 (7)0.0590 (4)
H640.43690.77560.04040.071*
C650.40023 (12)0.7211 (3)0.11049 (7)0.0609 (5)
H650.45730.70670.12640.073*
C660.32809 (12)0.7017 (3)0.13764 (7)0.0569 (4)
H660.33650.67350.17220.068*
O670.00481 (8)0.76751 (19)0.04607 (4)0.0617 (3)
C680.12557 (11)0.8388 (2)0.01413 (5)0.0513 (4)
H68A0.17250.92160.02380.062*
H68B0.07020.90900.01870.062*
C690.11942 (12)0.6708 (3)0.04842 (6)0.0562 (4)
H690.08460.56910.03970.067*
C700.15938 (17)0.6563 (4)0.08966 (8)0.0907 (7)
H70A0.19480.75540.09950.109*
H70B0.15270.54700.10940.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0877 (14)0.0952 (16)0.0482 (9)0.0120 (12)0.0088 (9)0.0048 (10)
C20.109 (2)0.149 (3)0.0551 (12)0.0362 (19)0.0155 (12)0.0102 (14)
C30.0764 (17)0.223 (4)0.0542 (13)0.034 (2)0.0095 (11)0.0330 (19)
C40.0668 (14)0.206 (3)0.0642 (14)0.0148 (17)0.0059 (11)0.0406 (19)
C50.0641 (13)0.130 (2)0.0623 (12)0.0137 (13)0.0056 (9)0.0202 (12)
C60.0622 (11)0.0808 (12)0.0442 (9)0.0055 (9)0.0014 (7)0.0142 (8)
C70.0588 (10)0.0523 (9)0.0438 (8)0.0014 (7)0.0049 (7)0.0055 (7)
C80.0554 (10)0.0529 (9)0.0456 (8)0.0028 (7)0.0074 (7)0.0034 (7)
N90.0551 (8)0.0459 (7)0.0412 (7)0.0035 (5)0.0052 (5)0.0009 (5)
C100.0545 (9)0.0381 (7)0.0480 (8)0.0024 (6)0.0068 (7)0.0051 (6)
C110.0559 (9)0.0467 (9)0.0464 (8)0.0013 (7)0.0086 (7)0.0042 (6)
N120.0617 (9)0.0569 (8)0.0434 (7)0.0006 (6)0.0079 (6)0.0031 (6)
C130.0614 (11)0.0494 (9)0.0573 (10)0.0009 (7)0.0004 (8)0.0035 (7)
C140.0535 (10)0.0570 (10)0.0768 (12)0.0002 (8)0.0018 (9)0.0115 (9)
C150.0569 (11)0.0641 (11)0.0813 (13)0.0060 (8)0.0197 (9)0.0150 (9)
C160.0676 (12)0.0638 (11)0.0551 (9)0.0052 (8)0.0186 (8)0.0047 (8)
O170.0573 (8)0.0924 (10)0.0568 (7)0.0030 (6)0.0145 (6)0.0012 (6)
C180.0629 (10)0.0521 (9)0.0442 (8)0.0048 (7)0.0062 (7)0.0036 (7)
C190.0586 (10)0.0598 (10)0.0492 (9)0.0039 (8)0.0111 (7)0.0033 (7)
C200.1065 (18)0.0996 (18)0.0631 (12)0.0072 (14)0.0092 (12)0.0218 (12)
C510.0788 (12)0.0736 (12)0.0478 (9)0.0004 (10)0.0145 (8)0.0074 (8)
C520.0977 (17)0.1113 (19)0.0560 (11)0.0114 (14)0.0266 (11)0.0098 (12)
C530.0757 (15)0.148 (2)0.0564 (12)0.0170 (15)0.0267 (10)0.0156 (14)
C540.0615 (12)0.130 (2)0.0612 (12)0.0114 (12)0.0113 (9)0.0201 (13)
C550.0627 (11)0.0847 (13)0.0516 (9)0.0090 (9)0.0075 (8)0.0027 (9)
C560.0551 (9)0.0615 (10)0.0399 (8)0.0022 (7)0.0067 (6)0.0039 (7)
C570.0553 (9)0.0423 (8)0.0396 (7)0.0006 (6)0.0045 (6)0.0007 (6)
C580.0526 (9)0.0461 (8)0.0407 (8)0.0027 (6)0.0029 (6)0.0017 (6)
N590.0538 (8)0.0442 (7)0.0370 (6)0.0025 (5)0.0043 (5)0.0020 (5)
C600.0541 (9)0.0364 (7)0.0433 (8)0.0001 (6)0.0039 (6)0.0020 (6)
C610.0536 (9)0.0430 (8)0.0420 (8)0.0011 (6)0.0033 (6)0.0015 (6)
N620.0544 (8)0.0512 (7)0.0404 (6)0.0015 (6)0.0030 (6)0.0019 (5)
C630.0623 (10)0.0486 (9)0.0490 (9)0.0015 (7)0.0117 (7)0.0010 (7)
C640.0536 (10)0.0581 (10)0.0668 (11)0.0042 (7)0.0133 (8)0.0081 (8)
C650.0504 (10)0.0629 (11)0.0684 (11)0.0001 (8)0.0004 (8)0.0096 (9)
C660.0582 (10)0.0620 (10)0.0491 (9)0.0020 (8)0.0033 (7)0.0024 (7)
O670.0533 (7)0.0819 (9)0.0485 (6)0.0040 (6)0.0018 (5)0.0053 (6)
C680.0626 (10)0.0515 (9)0.0397 (8)0.0056 (7)0.0044 (7)0.0064 (7)
C690.0617 (10)0.0608 (10)0.0451 (8)0.0012 (8)0.0013 (7)0.0003 (7)
C700.1170 (19)0.0961 (17)0.0614 (12)0.0061 (14)0.0214 (12)0.0227 (12)
Geometric parameters (Å, º) top
O17—C81.230 (2)C16—H160.9303
O67—C581.228 (2)C18—H18A0.9704
N9—C81.373 (2)C18—H18B0.9698
N9—C181.475 (2)C19—H190.9301
N9—C101.397 (2)C20—H20B0.9310
N12—C71.294 (2)C20—H20A0.9297
N12—C111.376 (2)C51—C521.381 (3)
N59—C601.384 (2)C51—C561.392 (2)
N59—C681.4779 (17)C52—C531.367 (4)
N59—C581.376 (2)C53—C541.372 (3)
N62—C571.290 (2)C54—C551.380 (3)
N62—C611.384 (2)C55—C561.388 (3)
C1—C21.384 (3)C56—C571.485 (2)
C1—C61.391 (3)C57—C581.482 (2)
C2—C31.361 (5)C60—C611.407 (2)
C3—C41.371 (5)C60—C631.399 (2)
C4—C51.393 (3)C61—C661.397 (2)
C5—C61.383 (3)C63—C641.368 (3)
C6—C71.483 (3)C64—C651.390 (3)
C7—C81.483 (2)C65—C661.366 (3)
C10—C111.401 (2)C68—C691.487 (2)
C10—C131.392 (2)C69—C701.297 (3)
C11—C161.408 (3)C51—H510.9296
C13—C141.378 (3)C52—H520.9296
C14—C151.382 (3)C53—H530.9305
C15—C161.359 (3)C54—H540.9295
C18—C191.491 (2)C55—H550.9302
C19—C201.294 (3)C63—H630.9293
C1—H10.9305C64—H640.9298
C2—H20.9296C65—H650.9302
C3—H30.9312C66—H660.9312
C4—H40.9292C68—H68A0.9704
C5—H50.9306C68—H68B0.9703
C13—H130.9311C69—H690.9300
C14—H140.9289C70—H70A0.9309
C15—H150.9301C70—H70B0.9296
C8—N9—C10121.99 (13)C20—C19—H19118.04
C8—N9—C18117.12 (14)C19—C20—H20B120.02
C10—N9—C18120.89 (13)H20A—C20—H20B119.95
C7—N12—C11119.18 (14)C19—C20—H20A120.03
C60—N59—C68121.22 (13)C52—C51—C56120.21 (19)
C58—N59—C60122.21 (12)C51—C52—C53120.3 (2)
C58—N59—C68116.57 (13)C52—C53—C54120.0 (2)
C57—N62—C61118.96 (13)C53—C54—C55120.5 (2)
C2—C1—C6120.8 (2)C54—C55—C56120.08 (19)
C1—C2—C3119.9 (3)C51—C56—C55118.84 (16)
C2—C3—C4120.2 (3)C51—C56—C57119.09 (15)
C3—C4—C5120.7 (3)C55—C56—C57122.01 (14)
C4—C5—C6119.5 (2)N62—C57—C56118.27 (13)
C1—C6—C7118.51 (18)N62—C57—C58123.49 (14)
C5—C6—C7122.59 (17)C56—C57—C58118.23 (14)
C1—C6—C5118.87 (19)O67—C58—N59121.30 (14)
C6—C7—C8119.29 (15)O67—C58—C57123.47 (15)
N12—C7—C6117.92 (14)N59—C58—C57115.23 (14)
N12—C7—C8122.75 (15)N59—C60—C61117.97 (14)
O17—C8—C7123.04 (15)N59—C60—C63123.00 (14)
N9—C8—C7115.89 (14)C61—C60—C63119.03 (15)
O17—C8—N9121.08 (15)N62—C61—C60121.91 (15)
N9—C10—C11117.32 (14)N62—C61—C66118.89 (15)
N9—C10—C13122.91 (15)C60—C61—C66119.18 (15)
C11—C10—C13119.78 (16)C60—C63—C64120.26 (15)
N12—C11—C10122.79 (15)C63—C64—C65120.98 (17)
N12—C11—C16118.53 (15)C64—C65—C66119.51 (17)
C10—C11—C16118.68 (15)C61—C66—C65121.04 (17)
C10—C13—C14119.80 (17)N59—C68—C69113.13 (12)
C13—C14—C15120.91 (18)C68—C69—C70124.5 (2)
C14—C15—C16119.90 (18)C52—C51—H51119.87
C11—C16—C15120.92 (17)C56—C51—H51119.92
N9—C18—C19113.21 (13)C51—C52—H52119.86
C18—C19—C20124.0 (2)C53—C52—H52119.81
C2—C1—H1119.63C52—C53—H53119.98
C6—C1—H1119.61C54—C53—H53119.99
C3—C2—H2120.08C53—C54—H54119.74
C1—C2—H2120.00C55—C54—H54119.80
C2—C3—H3119.88C54—C55—H55119.93
C4—C3—H3119.92C56—C55—H55119.99
C3—C4—H4119.62C60—C63—H63119.88
C5—C4—H4119.72C64—C63—H63119.86
C4—C5—H5120.24C63—C64—H64119.55
C6—C5—H5120.22C65—C64—H64119.47
C14—C13—H13120.11C64—C65—H65120.18
C10—C13—H13120.09C66—C65—H65120.31
C13—C14—H14119.60C61—C66—H66119.52
C15—C14—H14119.50C65—C66—H66119.45
C16—C15—H15120.10N59—C68—H68A108.98
C14—C15—H15119.99N59—C68—H68B109.03
C15—C16—H16119.50C69—C68—H68A108.90
C11—C16—H16119.58C69—C68—H68B108.91
N9—C18—H18B108.89H68A—C68—H68B107.76
C19—C18—H18A108.96C68—C69—H69117.82
N9—C18—H18A108.92C70—C69—H69117.72
C19—C18—H18B108.99C69—C70—H70A119.98
H18A—C18—H18B107.74C69—C70—H70B120.06
C18—C19—H19118.01H70A—C70—H70B119.97
C8—N9—C10—C112.1 (2)C6—C7—C8—O171.2 (2)
C8—N9—C18—C1990.75 (17)N12—C7—C8—O17176.54 (15)
C10—N9—C18—C1989.23 (18)N9—C10—C13—C14179.32 (15)
C10—N9—C8—O17175.99 (14)C11—C10—C13—C141.0 (2)
C18—N9—C8—O174.0 (2)N9—C10—C11—C16179.83 (17)
C10—N9—C8—C73.5 (2)C13—C10—C11—N12180.0 (5)
C18—N9—C8—C7176.51 (12)N9—C10—C11—N120.2 (2)
C18—N9—C10—C132.3 (2)C13—C10—C11—C160.4 (2)
C8—N9—C10—C13177.64 (14)C10—C11—C16—C150.5 (3)
C18—N9—C10—C11177.94 (13)N12—C11—C16—C15179.14 (18)
C11—N12—C7—C80.8 (2)C10—C13—C14—C150.6 (3)
C7—N12—C11—C100.8 (2)C13—C14—C15—C160.3 (3)
C11—N12—C7—C6178.61 (15)C14—C15—C16—C110.8 (3)
C7—N12—C11—C16179.59 (17)N9—C18—C19—C20136.6 (2)
C58—N59—C60—C63177.43 (13)C52—C51—C56—C57178.88 (18)
C60—N59—C68—C6987.73 (17)C52—C51—C56—C551.5 (3)
C68—N59—C58—C57175.20 (12)C56—C51—C52—C531.5 (3)
C58—N59—C60—C612.5 (2)C51—C52—C53—C540.2 (4)
C68—N59—C60—C632.1 (2)C52—C53—C54—C551.9 (4)
C68—N59—C60—C61178.01 (12)C53—C54—C55—C562.0 (3)
C60—N59—C58—O67174.38 (14)C54—C55—C56—C57177.07 (18)
C58—N59—C68—C6991.81 (16)C54—C55—C56—C510.3 (3)
C60—N59—C58—C575.26 (19)C51—C56—C57—N6235.7 (2)
C68—N59—C58—O675.2 (2)C55—C56—C57—C5839.5 (2)
C57—N62—C61—C600.9 (2)C51—C56—C57—C58143.14 (15)
C61—N62—C57—C582.3 (2)C55—C56—C57—N62141.62 (17)
C61—N62—C57—C56178.90 (13)C56—C57—C58—O674.5 (2)
C57—N62—C61—C66179.73 (16)N62—C57—C58—N595.3 (2)
C2—C1—C6—C51.7 (3)C56—C57—C58—N59175.87 (12)
C6—C1—C2—C31.8 (4)N62—C57—C58—O67174.28 (15)
C2—C1—C6—C7179.8 (2)C63—C60—C61—C660.4 (2)
C1—C2—C3—C40.3 (5)N59—C60—C61—C66179.73 (15)
C2—C3—C4—C51.3 (5)N59—C60—C63—C64179.64 (16)
C3—C4—C5—C61.4 (4)C61—C60—C63—C640.5 (2)
C4—C5—C6—C7178.1 (2)C63—C60—C61—N62179.17 (14)
C4—C5—C6—C10.1 (3)N59—C60—C61—N620.9 (2)
C1—C6—C7—N1236.6 (2)N62—C61—C66—C65178.88 (17)
C5—C6—C7—C840.7 (3)C60—C61—C66—C650.0 (3)
C5—C6—C7—N12141.46 (19)C60—C63—C64—C650.2 (3)
C1—C6—C7—C8141.30 (16)C63—C64—C65—C660.1 (4)
C6—C7—C8—N9179.29 (14)C64—C65—C66—C610.2 (3)
N12—C7—C8—N93.0 (2)N59—C68—C69—C70132.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O170.932.502.921 (3)108
C14—H14···O67i0.932.603.360 (2)140
C55—H55···O670.932.462.891 (2)108
C68—H68B···O67ii0.972.563.383 (2)143
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H14N2O
Mr262.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.123 (2), 7.039 (1), 26.405 (3)
β (°) 95.25 (1)
V3)2799.0 (6)
Z8
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.912, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
5103, 5103, 4037
Rint0.000
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.152, 1.05
No. of reflections5103
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O170.93062.50082.921 (3)108
C14—H14···O67i0.92892.59593.360 (2)140
C55—H55···O670.93022.45942.891 (2)108
C68—H68B···O67ii0.97032.56013.383 (2)143
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.
 

Acknowledgements

We wish to thank the MASciR Foundation and the University of Bordeaux supporting this research.

References

First citationBenzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKhan, S. A., Saleem, K. & Khan, Z. (2008). Eur. J. Med. Chem. 43, 2257–2261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTandon, V. K., Yadav, D. B., Maurya, H. K., Chaturvedi, A. K. & Shukla, P. K. (2006). Bioorg. Med. Chem. 14, 6120–6126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, L., Liu, F. W., Dai, G. F. & Liu, H. M. (2007). Bioorg. Med. Chem. Lett. 17, 609–612.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds