organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Creatininium hydrogen maleate

aDepartment of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India, and cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 28 September 2011; accepted 29 September 2011; online 12 October 2011)

In the title compound, C4H8N3O+·C4H3O4, the cations and anions are linked through N—H⋯O hydrogen bonds making a ionic pair with an R22(8) ring motif. These ionic pairs are further connected through another N—H⋯O hydrogen bond, leading to an R66(16) ring motif around the inversion centres of the unit cell. These approximately planar aggregates are further connected through weak van der Waals inter­actions in the unit cell. The anions have a characteristic intra­molecular O—H⋯O hydrogen bond with a self-associated ring S(7) motif.

Related literature

For related structures, see: Ali et al. (2011[Ali, A. J., Athimoolam, S. & Bahadur, S. A. (2011). Acta Cryst. E67, o1376.]); Bahadur, Kannan et al. (2007[Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387-o2389.]); Bahadur, Sivapragasam et al. (2007[Bahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714-o1716.]); Bahadur, Rajalakshmi et al. (2007[Bahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.]). For hydrogen-bonding motif notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For the importance of creatinine, see: Madaras & Buck (1996[Madaras, M. B. & Buck, R. P. (1996). Anal. Chem. 68, 3832-3839.]); Sharma et al. (2004[Sharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971-2977.]); Narayanan & Appleton (1980[Narayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119-1126.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N3O+·C4H3O4

  • Mr = 229.20

  • Monoclinic, P 21 /n

  • a = 5.6271 (4) Å

  • b = 24.8915 (17) Å

  • c = 7.7752 (6) Å

  • β = 108.69 (2)°

  • V = 1031.62 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 9754 measured reflections

  • 1823 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.06

  • 1823 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14⋯O22 0.93 (2) 1.79 (2) 2.725 (2) 178 (2)
N16—H15A⋯O24i 0.89 (2) 1.96 (2) 2.833 (2) 168 (2)
N16—H15B⋯O21 0.93 (2) 1.88 (2) 2.804 (2) 174 (2)
O23—H23A⋯O21 1.00 (3) 1.46 (3) 2.457 (2) 174 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Intermolecular forces play an essential role in the formation of supramolecular systems which are useful for definite social applications. In which, the phenomenon of hydrogen bond has its importance in the areas of molecular recognition, crystal engineering research and supramolecular chemistry. Their strength and directionality is responsible for crystal packing and entire molecular arrays (Desiraju, 1989). We are interested on the the specificity of recognition between inorganic / organic acids and cretinine molecule. Creatinine, a blood metabolite of considerable importance in clinical chemistry, particularly as an indicator of renal function. It has been proven that determination of creatinine is more valuable for the detection of renal dysfunction than that of urea (Sharma et al., 2004). In renal physiology, creatinine clearance (CCr; Madaras & Buck, 1996) is the volume of blood plasma that is cleared of creatinine per unit time. Clinically, creatinine clearance is a useful measure for estimating the glomerular Filtration rate (GFR) of the kidneys. Anabnormal level of creatinine in biological fluids is an indicator of various disease states (Narayanan & Appleton, 1980).

The asymmetric part of the title compound, (I), contains one creatininium cation and one maleate anion (Fig.1). The protonation of the N site of the cation is evident from C—N bond distances and the other bond distances and angles are comaparable with Creatininium cinnamate (Ali et al., 2011), Creatininium hydrogen oxalate monohydrate (Bahadur, Kannan et al., 2007), Creatininium benzoate (Bahadur, Sivapragasam et al., 2007) and bis(creatininium) sulfate (Bahadur, Rajalakshmi et al., 2007). The deprotonation on the one of the –COOH groups of the maleic acid is confirmed from that –COO- bond geometry.

In the crystal structure, the molecular aggregations are stabilized through a two dimensional hydrogen bonding pattern (Fig. 2; Table 1). Cations are linked to anions forming an ion pair through two N—H···O bonds that produce ring R22(8) motifs (Bernstein et al., 1995). The same type of ring motif is observed in previously reported structures from our laboratory. Anions are having a characteristic intramolecular O—H···O hydrogen bond with a self-associated S(7) motif. This cation-anion pairs are further linked through another N—H···O hydrogen bond leading to a ring R66(16) motif around the inversion centres of the unit cell. This ring motifs are almost planar. These ring motifs are connected through weak Van der Waals interactions in the unit cell.

Related literature top

For related structures, see: Ali et al. (2011); Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007); Bahadur, Rajalakshmi et al. (2007). For hydrogen-bonding motif notation, see: Bernstein et al. (1995); Desiraju (1989). For the importance of creatinine, see: Madaras & Buck (1996); Sharma et al. (2004); Narayanan & Appleton (1980).

Experimental top

The title compound was crystallized from an aqueous mixture containing creatinine and maleic acid in the stoichiometric ratio of 1:1 at room temperature by slow evaporation technique.

Refinement top

All the H atoms except the atoms involved in hydrogen bonds were positioned geometrically and refined using a riding model, with C—H = 0.93 (–CH) and 0.96 Å (–CH3) and Uiso(H) = 1.2–1.5 Ueq (parent atom). H atoms involved in hydrogen bonds were located from differential fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids. H bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the molecules viewed down the b-axis. H atoms not involved in the H-bonds (dashed lines) are omitted for clarity.
2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 3-carboxyprop-2-enoate top
Crystal data top
C4H8N3O+·C4H3O4F(000) = 480
Mr = 229.20Dx = 1.476 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3738 reflections
a = 5.6271 (4) Åθ = 2.3–24.6°
b = 24.8915 (17) ŵ = 0.12 mm1
c = 7.7752 (6) ÅT = 293 K
β = 108.69 (2)°Block, colourless
V = 1031.62 (18) Å30.24 × 0.21 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1699 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
ω scansh = 66
9754 measured reflectionsk = 2929
1823 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.2134P]
where P = (Fo2 + 2Fc2)/3
1823 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C4H8N3O+·C4H3O4V = 1031.62 (18) Å3
Mr = 229.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6271 (4) ŵ = 0.12 mm1
b = 24.8915 (17) ÅT = 293 K
c = 7.7752 (6) Å0.24 × 0.21 × 0.17 mm
β = 108.69 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1699 reflections with I > 2σ(I)
9754 measured reflectionsRint = 0.022
1823 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
1823 reflectionsΔρmin = 0.22 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.7258 (3)0.15606 (7)0.1940 (2)0.0572 (4)
H11A0.77280.11880.18120.086*
H11B0.85980.17690.21130.086*
H11C0.57750.16040.29700.086*
N110.6762 (2)0.17415 (4)0.03149 (16)0.0437 (3)
C120.7738 (3)0.22340 (5)0.0666 (2)0.0459 (3)
H12A0.72150.25470.01070.055*
H12B0.95550.22270.11520.055*
C130.6576 (3)0.22303 (5)0.2162 (2)0.0444 (3)
O130.6882 (2)0.25506 (4)0.33827 (17)0.0623 (3)
N140.5068 (2)0.17843 (4)0.18824 (16)0.0418 (3)
C150.5203 (2)0.15060 (5)0.04068 (18)0.0390 (3)
N160.3960 (2)0.10634 (5)0.01514 (19)0.0489 (3)
H140.403 (3)0.1680 (7)0.255 (2)0.056 (5)*
H15A0.412 (3)0.0883 (8)0.109 (3)0.062 (5)*
H15B0.296 (3)0.0947 (7)0.052 (2)0.060 (5)*
O210.1034 (2)0.07770 (4)0.20235 (16)0.0606 (3)
O220.1978 (2)0.14924 (4)0.37969 (15)0.0555 (3)
C210.0833 (3)0.10606 (5)0.33167 (19)0.0428 (3)
C220.0877 (3)0.08869 (6)0.43292 (19)0.0451 (3)
H220.08810.11120.52840.054*
C230.2406 (3)0.04642 (6)0.41017 (19)0.0450 (3)
H230.33510.04530.48870.054*
C240.2848 (3)0.00087 (5)0.28009 (18)0.0433 (3)
O230.1681 (2)0.00175 (4)0.16102 (15)0.0601 (3)
O240.4294 (2)0.03477 (4)0.28982 (16)0.0573 (3)
H23A0.056 (5)0.0298 (11)0.170 (3)0.104 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0641 (10)0.0581 (10)0.0588 (9)0.0113 (7)0.0330 (8)0.0079 (7)
N110.0461 (6)0.0370 (6)0.0523 (7)0.0057 (5)0.0220 (5)0.0044 (5)
C120.0446 (7)0.0338 (7)0.0586 (8)0.0044 (5)0.0157 (6)0.0021 (6)
C130.0428 (7)0.0332 (7)0.0550 (8)0.0017 (5)0.0126 (6)0.0044 (6)
O130.0661 (7)0.0493 (7)0.0743 (7)0.0085 (5)0.0263 (6)0.0232 (6)
N140.0470 (6)0.0343 (6)0.0467 (6)0.0021 (5)0.0188 (5)0.0025 (5)
C150.0404 (7)0.0329 (7)0.0439 (7)0.0016 (5)0.0139 (5)0.0006 (5)
N160.0579 (8)0.0412 (7)0.0543 (7)0.0131 (5)0.0274 (6)0.0098 (6)
O210.0827 (8)0.0500 (6)0.0664 (7)0.0229 (6)0.0479 (6)0.0165 (5)
O220.0700 (7)0.0399 (6)0.0656 (7)0.0154 (5)0.0345 (6)0.0100 (5)
C210.0505 (8)0.0344 (7)0.0458 (7)0.0009 (6)0.0187 (6)0.0002 (5)
C220.0579 (8)0.0377 (7)0.0452 (7)0.0016 (6)0.0242 (6)0.0058 (6)
C230.0527 (8)0.0413 (7)0.0479 (7)0.0026 (6)0.0255 (6)0.0015 (6)
C240.0495 (8)0.0378 (7)0.0455 (8)0.0041 (6)0.0191 (6)0.0000 (6)
O230.0839 (8)0.0481 (6)0.0638 (7)0.0241 (6)0.0452 (6)0.0178 (5)
O240.0671 (7)0.0485 (6)0.0655 (7)0.0187 (5)0.0340 (6)0.0107 (5)
Geometric parameters (Å, º) top
C11—N111.450 (2)C15—N161.3025 (18)
C11—H11A0.9600N16—H15A0.89 (2)
C11—H11B0.9600N16—H15B0.93 (2)
C11—H11C0.9600O21—C211.2630 (17)
N11—C151.3206 (18)O22—C211.2471 (17)
N11—C121.4552 (17)C21—C221.490 (2)
C12—C131.506 (2)C22—C231.334 (2)
C12—H12A0.9700C22—H220.9300
C12—H12B0.9700C23—C241.4862 (19)
C13—O131.2090 (17)C23—H230.9300
C13—N141.3719 (17)C24—O241.2225 (17)
N14—C151.3631 (18)C24—O231.2967 (17)
N14—H140.934 (19)O23—H23A1.00 (3)
N11—C11—H11A109.5C13—N14—H14127.1 (11)
N11—C11—H11B109.5N16—C15—N11126.35 (13)
H11A—C11—H11B109.5N16—C15—N14122.80 (13)
N11—C11—H11C109.5N11—C15—N14110.84 (12)
H11A—C11—H11C109.5C15—N16—H15A121.2 (12)
H11B—C11—H11C109.5C15—N16—H15B115.6 (11)
C15—N11—C11124.88 (12)H15A—N16—H15B123.2 (16)
C15—N11—C12109.99 (11)O22—C21—O21123.41 (13)
C11—N11—C12124.93 (12)O22—C21—C22116.82 (12)
N11—C12—C13102.44 (11)O21—C21—C22119.76 (12)
N11—C12—H12A111.3C23—C22—C21131.07 (13)
C13—C12—H12A111.3C23—C22—H22114.5
N11—C12—H12B111.3C21—C22—H22114.5
C13—C12—H12B111.3C22—C23—C24130.69 (13)
H12A—C12—H12B109.2C22—C23—H23114.7
O13—C13—N14125.67 (14)C24—C23—H23114.7
O13—C13—C12127.94 (13)O24—C24—O23120.46 (13)
N14—C13—C12106.40 (11)O24—C24—C23118.75 (12)
C15—N14—C13110.25 (12)O23—C24—C23120.77 (12)
C15—N14—H14122.6 (11)C24—O23—H23A111.2 (14)
C15—N11—C12—C132.95 (15)C12—N11—C15—N142.40 (16)
C11—N11—C12—C13178.00 (14)C13—N14—C15—N16179.61 (13)
N11—C12—C13—O13177.46 (14)C13—N14—C15—N110.69 (16)
N11—C12—C13—N142.45 (14)O22—C21—C22—C23177.12 (16)
O13—C13—N14—C15178.69 (14)O21—C21—C22—C231.9 (2)
C12—C13—N14—C151.22 (15)C21—C22—C23—C242.8 (3)
C11—N11—C15—N163.7 (2)C22—C23—C24—O24177.17 (16)
C12—N11—C15—N16178.73 (13)C22—C23—C24—O231.3 (2)
C11—N11—C15—N14177.45 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O220.93 (2)1.79 (2)2.725 (2)178 (2)
N16—H15A···O24i0.89 (2)1.96 (2)2.833 (2)168 (2)
N16—H15B···O210.93 (2)1.88 (2)2.804 (2)174 (2)
O23—H23A···O211.00 (3)1.46 (3)2.457 (2)174 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC4H8N3O+·C4H3O4
Mr229.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.6271 (4), 24.8915 (17), 7.7752 (6)
β (°) 108.69 (2)
V3)1031.62 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9754, 1823, 1699
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.06
No. of reflections1823
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O220.93 (2)1.79 (2)2.725 (2)178 (2)
N16—H15A···O24i0.89 (2)1.96 (2)2.833 (2)168 (2)
N16—H15B···O210.93 (2)1.88 (2)2.804 (2)174 (2)
O23—H23A···O211.00 (3)1.46 (3)2.457 (2)174 (2)
Symmetry code: (i) x, y, z.
 

Acknowledgements

AJA and SAB sincerely thank the Vice Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA thanks the Principal and Management of the National College of Engineering for their support.

References

First citationAli, A. J., Athimoolam, S. & Bahadur, S. A. (2011). Acta Cryst. E67, o1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387–o2389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714–o1716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationMadaras, M. B. & Buck, R. P. (1996). Anal. Chem. 68, 3832–3839.  CrossRef CAS PubMed Google Scholar
First citationNarayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119–1126.  CAS PubMed Web of Science Google Scholar
First citationSharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971–2977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds