organic compounds
Creatininium hydrogen maleate
aDepartment of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India, and cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India
*Correspondence e-mail: athi81s@yahoo.co.in
In the title compound, C4H8N3O+·C4H3O4−, the cations and anions are linked through N—H⋯O hydrogen bonds making a ionic pair with an R22(8) ring motif. These ionic pairs are further connected through another N—H⋯O hydrogen bond, leading to an R66(16) ring motif around the inversion centres of the These approximately planar aggregates are further connected through weak van der Waals interactions in the The anions have a characteristic intramolecular O—H⋯O hydrogen bond with a self-associated ring S(7) motif.
Related literature
For related structures, see: Ali et al. (2011); Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007); Bahadur, Rajalakshmi et al. (2007). For hydrogen-bonding motif notation, see: Bernstein et al. (1995); Desiraju (1989). For the importance of creatinine, see: Madaras & Buck (1996); Sharma et al. (2004); Narayanan & Appleton (1980).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC.
Supporting information
10.1107/S1600536811040050/hg5104sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811040050/hg5104Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811040050/hg5104Isup3.cml
The title compound was crystallized from an aqueous mixture containing creatinine and maleic acid in the stoichiometric ratio of 1:1 at room temperature by slow evaporation technique.
All the H atoms except the atoms involved in hydrogen bonds were positioned geometrically and refined using a riding model, with C—H = 0.93 (–CH) and 0.96 Å (–CH3) and Uiso(H) = 1.2–1.5 Ueq (parent atom). H atoms involved in hydrogen bonds were located from differential fourier map and refined isotropically.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).C4H8N3O+·C4H3O4− | F(000) = 480 |
Mr = 229.20 | Dx = 1.476 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3738 reflections |
a = 5.6271 (4) Å | θ = 2.3–24.6° |
b = 24.8915 (17) Å | µ = 0.12 mm−1 |
c = 7.7752 (6) Å | T = 293 K |
β = 108.69 (2)° | Block, colourless |
V = 1031.62 (18) Å3 | 0.24 × 0.21 × 0.17 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 1699 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 25.0°, θmin = 2.9° |
ω scans | h = −6→6 |
9754 measured reflections | k = −29→29 |
1823 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0593P)2 + 0.2134P] where P = (Fo2 + 2Fc2)/3 |
1823 reflections | (Δ/σ)max < 0.001 |
162 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C4H8N3O+·C4H3O4− | V = 1031.62 (18) Å3 |
Mr = 229.20 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.6271 (4) Å | µ = 0.12 mm−1 |
b = 24.8915 (17) Å | T = 293 K |
c = 7.7752 (6) Å | 0.24 × 0.21 × 0.17 mm |
β = 108.69 (2)° |
Bruker SMART APEX CCD area-detector diffractometer | 1699 reflections with I > 2σ(I) |
9754 measured reflections | Rint = 0.022 |
1823 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.23 e Å−3 |
1823 reflections | Δρmin = −0.22 e Å−3 |
162 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.7258 (3) | 0.15606 (7) | −0.1940 (2) | 0.0572 (4) | |
H11A | 0.7728 | 0.1188 | −0.1812 | 0.086* | |
H11B | 0.8598 | 0.1769 | −0.2113 | 0.086* | |
H11C | 0.5775 | 0.1604 | −0.2970 | 0.086* | |
N11 | 0.6762 (2) | 0.17415 (4) | −0.03149 (16) | 0.0437 (3) | |
C12 | 0.7738 (3) | 0.22340 (5) | 0.0666 (2) | 0.0459 (3) | |
H12A | 0.7215 | 0.2547 | −0.0107 | 0.055* | |
H12B | 0.9555 | 0.2227 | 0.1152 | 0.055* | |
C13 | 0.6576 (3) | 0.22303 (5) | 0.2162 (2) | 0.0444 (3) | |
O13 | 0.6882 (2) | 0.25506 (4) | 0.33827 (17) | 0.0623 (3) | |
N14 | 0.5068 (2) | 0.17843 (4) | 0.18824 (16) | 0.0418 (3) | |
C15 | 0.5203 (2) | 0.15060 (5) | 0.04068 (18) | 0.0390 (3) | |
N16 | 0.3960 (2) | 0.10634 (5) | −0.01514 (19) | 0.0489 (3) | |
H14 | 0.403 (3) | 0.1680 (7) | 0.255 (2) | 0.056 (5)* | |
H15A | 0.412 (3) | 0.0883 (8) | −0.109 (3) | 0.062 (5)* | |
H15B | 0.296 (3) | 0.0947 (7) | 0.052 (2) | 0.060 (5)* | |
O21 | 0.1034 (2) | 0.07770 (4) | 0.20235 (16) | 0.0606 (3) | |
O22 | 0.1978 (2) | 0.14924 (4) | 0.37969 (15) | 0.0555 (3) | |
C21 | 0.0833 (3) | 0.10606 (5) | 0.33167 (19) | 0.0428 (3) | |
C22 | −0.0877 (3) | 0.08869 (6) | 0.43292 (19) | 0.0451 (3) | |
H22 | −0.0881 | 0.1112 | 0.5284 | 0.054* | |
C23 | −0.2406 (3) | 0.04642 (6) | 0.41017 (19) | 0.0450 (3) | |
H23 | −0.3351 | 0.0453 | 0.4887 | 0.054* | |
C24 | −0.2848 (3) | 0.00087 (5) | 0.28009 (18) | 0.0433 (3) | |
O23 | −0.1681 (2) | −0.00175 (4) | 0.16102 (15) | 0.0601 (3) | |
O24 | −0.4294 (2) | −0.03477 (4) | 0.28982 (16) | 0.0573 (3) | |
H23A | −0.056 (5) | 0.0298 (11) | 0.170 (3) | 0.104 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0641 (10) | 0.0581 (10) | 0.0588 (9) | −0.0113 (7) | 0.0330 (8) | −0.0079 (7) |
N11 | 0.0461 (6) | 0.0370 (6) | 0.0523 (7) | −0.0057 (5) | 0.0220 (5) | −0.0044 (5) |
C12 | 0.0446 (7) | 0.0338 (7) | 0.0586 (8) | −0.0044 (5) | 0.0157 (6) | −0.0021 (6) |
C13 | 0.0428 (7) | 0.0332 (7) | 0.0550 (8) | 0.0017 (5) | 0.0126 (6) | −0.0044 (6) |
O13 | 0.0661 (7) | 0.0493 (7) | 0.0743 (7) | −0.0085 (5) | 0.0263 (6) | −0.0232 (6) |
N14 | 0.0470 (6) | 0.0343 (6) | 0.0467 (6) | −0.0021 (5) | 0.0188 (5) | −0.0025 (5) |
C15 | 0.0404 (7) | 0.0329 (7) | 0.0439 (7) | 0.0016 (5) | 0.0139 (5) | 0.0006 (5) |
N16 | 0.0579 (8) | 0.0412 (7) | 0.0543 (7) | −0.0131 (5) | 0.0274 (6) | −0.0098 (6) |
O21 | 0.0827 (8) | 0.0500 (6) | 0.0664 (7) | −0.0229 (6) | 0.0479 (6) | −0.0165 (5) |
O22 | 0.0700 (7) | 0.0399 (6) | 0.0656 (7) | −0.0154 (5) | 0.0345 (6) | −0.0100 (5) |
C21 | 0.0505 (8) | 0.0344 (7) | 0.0458 (7) | −0.0009 (6) | 0.0187 (6) | 0.0002 (5) |
C22 | 0.0579 (8) | 0.0377 (7) | 0.0452 (7) | −0.0016 (6) | 0.0242 (6) | −0.0058 (6) |
C23 | 0.0527 (8) | 0.0413 (7) | 0.0479 (7) | −0.0026 (6) | 0.0255 (6) | −0.0015 (6) |
C24 | 0.0495 (8) | 0.0378 (7) | 0.0455 (8) | −0.0041 (6) | 0.0191 (6) | 0.0000 (6) |
O23 | 0.0839 (8) | 0.0481 (6) | 0.0638 (7) | −0.0241 (6) | 0.0452 (6) | −0.0178 (5) |
O24 | 0.0671 (7) | 0.0485 (6) | 0.0655 (7) | −0.0187 (5) | 0.0340 (6) | −0.0107 (5) |
C11—N11 | 1.450 (2) | C15—N16 | 1.3025 (18) |
C11—H11A | 0.9600 | N16—H15A | 0.89 (2) |
C11—H11B | 0.9600 | N16—H15B | 0.93 (2) |
C11—H11C | 0.9600 | O21—C21 | 1.2630 (17) |
N11—C15 | 1.3206 (18) | O22—C21 | 1.2471 (17) |
N11—C12 | 1.4552 (17) | C21—C22 | 1.490 (2) |
C12—C13 | 1.506 (2) | C22—C23 | 1.334 (2) |
C12—H12A | 0.9700 | C22—H22 | 0.9300 |
C12—H12B | 0.9700 | C23—C24 | 1.4862 (19) |
C13—O13 | 1.2090 (17) | C23—H23 | 0.9300 |
C13—N14 | 1.3719 (17) | C24—O24 | 1.2225 (17) |
N14—C15 | 1.3631 (18) | C24—O23 | 1.2967 (17) |
N14—H14 | 0.934 (19) | O23—H23A | 1.00 (3) |
N11—C11—H11A | 109.5 | C13—N14—H14 | 127.1 (11) |
N11—C11—H11B | 109.5 | N16—C15—N11 | 126.35 (13) |
H11A—C11—H11B | 109.5 | N16—C15—N14 | 122.80 (13) |
N11—C11—H11C | 109.5 | N11—C15—N14 | 110.84 (12) |
H11A—C11—H11C | 109.5 | C15—N16—H15A | 121.2 (12) |
H11B—C11—H11C | 109.5 | C15—N16—H15B | 115.6 (11) |
C15—N11—C11 | 124.88 (12) | H15A—N16—H15B | 123.2 (16) |
C15—N11—C12 | 109.99 (11) | O22—C21—O21 | 123.41 (13) |
C11—N11—C12 | 124.93 (12) | O22—C21—C22 | 116.82 (12) |
N11—C12—C13 | 102.44 (11) | O21—C21—C22 | 119.76 (12) |
N11—C12—H12A | 111.3 | C23—C22—C21 | 131.07 (13) |
C13—C12—H12A | 111.3 | C23—C22—H22 | 114.5 |
N11—C12—H12B | 111.3 | C21—C22—H22 | 114.5 |
C13—C12—H12B | 111.3 | C22—C23—C24 | 130.69 (13) |
H12A—C12—H12B | 109.2 | C22—C23—H23 | 114.7 |
O13—C13—N14 | 125.67 (14) | C24—C23—H23 | 114.7 |
O13—C13—C12 | 127.94 (13) | O24—C24—O23 | 120.46 (13) |
N14—C13—C12 | 106.40 (11) | O24—C24—C23 | 118.75 (12) |
C15—N14—C13 | 110.25 (12) | O23—C24—C23 | 120.77 (12) |
C15—N14—H14 | 122.6 (11) | C24—O23—H23A | 111.2 (14) |
C15—N11—C12—C13 | 2.95 (15) | C12—N11—C15—N14 | −2.40 (16) |
C11—N11—C12—C13 | 178.00 (14) | C13—N14—C15—N16 | 179.61 (13) |
N11—C12—C13—O13 | 177.46 (14) | C13—N14—C15—N11 | 0.69 (16) |
N11—C12—C13—N14 | −2.45 (14) | O22—C21—C22—C23 | 177.12 (16) |
O13—C13—N14—C15 | −178.69 (14) | O21—C21—C22—C23 | −1.9 (2) |
C12—C13—N14—C15 | 1.22 (15) | C21—C22—C23—C24 | 2.8 (3) |
C11—N11—C15—N16 | 3.7 (2) | C22—C23—C24—O24 | 177.17 (16) |
C12—N11—C15—N16 | 178.73 (13) | C22—C23—C24—O23 | −1.3 (2) |
C11—N11—C15—N14 | −177.45 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N14—H14···O22 | 0.93 (2) | 1.79 (2) | 2.725 (2) | 178 (2) |
N16—H15A···O24i | 0.89 (2) | 1.96 (2) | 2.833 (2) | 168 (2) |
N16—H15B···O21 | 0.93 (2) | 1.88 (2) | 2.804 (2) | 174 (2) |
O23—H23A···O21 | 1.00 (3) | 1.46 (3) | 2.457 (2) | 174 (2) |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C4H8N3O+·C4H3O4− |
Mr | 229.20 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 5.6271 (4), 24.8915 (17), 7.7752 (6) |
β (°) | 108.69 (2) |
V (Å3) | 1031.62 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.24 × 0.21 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9754, 1823, 1699 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.102, 1.06 |
No. of reflections | 1823 |
No. of parameters | 162 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.22 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N14—H14···O22 | 0.93 (2) | 1.79 (2) | 2.725 (2) | 178 (2) |
N16—H15A···O24i | 0.89 (2) | 1.96 (2) | 2.833 (2) | 168 (2) |
N16—H15B···O21 | 0.93 (2) | 1.88 (2) | 2.804 (2) | 174 (2) |
O23—H23A···O21 | 1.00 (3) | 1.46 (3) | 2.457 (2) | 174 (2) |
Symmetry code: (i) −x, −y, −z. |
Acknowledgements
AJA and SAB sincerely thank the Vice Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA thanks the Principal and Management of the National College of Engineering for their support.
References
Ali, A. J., Athimoolam, S. & Bahadur, S. A. (2011). Acta Cryst. E67, o1376. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387–o2389. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714–o1716. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Madaras, M. B. & Buck, R. P. (1996). Anal. Chem. 68, 3832–3839. CrossRef CAS PubMed Google Scholar
Narayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119–1126. CAS PubMed Web of Science Google Scholar
Sharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971–2977. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Intermolecular forces play an essential role in the formation of supramolecular systems which are useful for definite social applications. In which, the phenomenon of hydrogen bond has its importance in the areas of molecular recognition, crystal engineering research and supramolecular chemistry. Their strength and directionality is responsible for crystal packing and entire molecular arrays (Desiraju, 1989). We are interested on the the specificity of recognition between inorganic / organic acids and cretinine molecule. Creatinine, a blood metabolite of considerable importance in clinical chemistry, particularly as an indicator of renal function. It has been proven that determination of creatinine is more valuable for the detection of renal dysfunction than that of urea (Sharma et al., 2004). In renal physiology, creatinine clearance (CCr; Madaras & Buck, 1996) is the volume of blood plasma that is cleared of creatinine per unit time. Clinically, creatinine clearance is a useful measure for estimating the glomerular Filtration rate (GFR) of the kidneys. Anabnormal level of creatinine in biological fluids is an indicator of various disease states (Narayanan & Appleton, 1980).
The asymmetric part of the title compound, (I), contains one creatininium cation and one maleate anion (Fig.1). The protonation of the N site of the cation is evident from C—N bond distances and the other bond distances and angles are comaparable with Creatininium cinnamate (Ali et al., 2011), Creatininium hydrogen oxalate monohydrate (Bahadur, Kannan et al., 2007), Creatininium benzoate (Bahadur, Sivapragasam et al., 2007) and bis(creatininium) sulfate (Bahadur, Rajalakshmi et al., 2007). The deprotonation on the one of the –COOH groups of the maleic acid is confirmed from that –COO- bond geometry.
In the crystal structure, the molecular aggregations are stabilized through a two dimensional hydrogen bonding pattern (Fig. 2; Table 1). Cations are linked to anions forming an ion pair through two N—H···O bonds that produce ring R22(8) motifs (Bernstein et al., 1995). The same type of ring motif is observed in previously reported structures from our laboratory. Anions are having a characteristic intramolecular O—H···O hydrogen bond with a self-associated S(7) motif. This cation-anion pairs are further linked through another N—H···O hydrogen bond leading to a ring R66(16) motif around the inversion centres of the unit cell. This ring motifs are almost planar. These ring motifs are connected through weak Van der Waals interactions in the unit cell.