organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,3-Tri­benzyl­indolin-2-one

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China, and bSchool of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
*Correspondence e-mail: liuyf@sxu.edu.cn

(Received 3 October 2011; accepted 13 October 2011; online 22 October 2011)

In the title compound, C29H25NO, the dihedral angles between the indolin-2-one ring system and the three benzene rings are 62.78 (9), 31.69 (9) and 80.94 (9)°.

Related literature

For general background to the use of indoline-2-one compounds as precursors for the synthesis of anti­tumor agents, see: Wang et al. (2011[Wang, S. B., Zhao, Y. F., Zhang, G. G., Lv, Y. X., Zhang, N. & Gong, P. (2011). Eur. J. Med. Chem. 8, 3509-3518.]). For a related structure, see: Katritzky et al. (1997[Katritzky, A. R., Feng, D. M., Qi, M., Lang, H. Y. & Steel, P. J. (1997). Bull. Soc. Chim. Belg. 106, 419-423.]).

[Scheme 1]

Experimental

Crystal data
  • C29H25NO

  • Mr = 403.50

  • Monoclinic, P 21

  • a = 8.3387 (9) Å

  • b = 9.6266 (10) Å

  • c = 13.9398 (14) Å

  • β = 99.442 (2)°

  • V = 1103.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.986

  • 4797 measured reflections

  • 2073 independent reflections

  • 1731 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.076

  • S = 1.05

  • 2073 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indoline-2-one compounds have been widely explored as precursors for the synthesis of antitumor agent (Wang et al., 2011). In the course of exploring new antitumor medicine, we obtained a intermediate compound C29H25NO (I), the synthesis and structure of which are reported here.

The title compound contain four ring planes, three benzene rings and one indoline-2-one ring. The interplanar dihedral angle between the indolin-2-one ring plane and the three benzene ring planes are 62.78 (9)°, 31.69 (9)° and 80.94 (9)\ respectively.

The molecules of (I) crystallize in the space group P21 which is different from that of 3-(1,2-diphenylethylidene)indolin-2-one (P-1) (Katritzky et al. 1997).

Related literature top

For general background to the use of indoline-2-one compounds as precursors

for the synthesis of antitumor agents, see: Wang et al. (2011). For a related structure, see: Katritzky et al. (1997).

Experimental top

Indolin-2-one (0.50 g, 3.76 mmol) was dissolved in THF (20 mL) and KOH (0.80 g, 14.3 mmol) was slowly added. After heating the stirred mixture at reflux temperature for 30 min, a solution of 1-(chloromethyl)benzene (2.00 g, 15.9 mmol) in THF was slowly added and the refluxing continued for 2 h. The mixture was then cooled to 333 K and poured into water (200 mL) and was extracted with chloroform and dried over Na2SO4. After removing the solvent, the crude product was purified by column chromatography on silica gel, affording the title compound (yield: 0.23 g, 15%). The compound was then dissolved in THF, and colorless crystals were formed on slow evaporation at room temperature over one week.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the b axis.
1,3,3-Tribenzylindolin-2-one top
Crystal data top
C29H25NOF(000) = 428
Mr = 403.50Dx = 1.214 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2492 reflections
a = 8.3387 (9) Åθ = 2.9–26.3°
b = 9.6266 (10) ŵ = 0.07 mm1
c = 13.9398 (14) ÅT = 296 K
β = 99.442 (2)°Block, yellow
V = 1103.8 (2) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2073 independent reflections
Radiation source: fine-focus sealed tube1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 97
Tmin = 0.979, Tmax = 0.986k = 1111
4797 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0404P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2073 reflectionsΔρmax = 0.10 e Å3
281 parametersΔρmin = 0.11 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.085 (5)
Crystal data top
C29H25NOV = 1103.8 (2) Å3
Mr = 403.50Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.3387 (9) ŵ = 0.07 mm1
b = 9.6266 (10) ÅT = 296 K
c = 13.9398 (14) Å0.30 × 0.20 × 0.20 mm
β = 99.442 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2073 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1731 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.028
4797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.10 e Å3
2073 reflectionsΔρmin = 0.11 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3706 (2)0.1015 (2)0.38221 (12)0.0693 (5)
N10.5070 (2)0.1315 (2)0.25382 (12)0.0454 (5)
C240.3103 (3)0.1520 (2)0.09974 (16)0.0446 (6)
C80.6583 (2)0.0925 (2)0.23014 (14)0.0415 (5)
C30.7426 (3)0.0128 (2)0.30485 (14)0.0393 (5)
C160.7158 (3)0.0745 (3)0.48023 (15)0.0519 (6)
H16A0.63430.07720.52250.062*
H16B0.73830.16980.46400.062*
C100.4948 (3)0.2266 (2)0.32102 (16)0.0464 (6)
C150.3277 (3)0.2368 (3)0.31634 (18)0.0558 (7)
H150.27840.19470.36400.067*
C40.8954 (3)0.0370 (3)0.29641 (17)0.0503 (6)
H40.95310.09170.34520.060*
C20.6413 (3)0.0012 (2)0.38491 (15)0.0437 (6)
C10.4884 (3)0.0807 (3)0.34282 (16)0.0468 (6)
C250.3007 (3)0.0100 (3)0.08741 (17)0.0524 (6)
H250.34960.04800.13710.063*
C170.8693 (3)0.0135 (2)0.53710 (15)0.0488 (6)
C230.3890 (3)0.2184 (3)0.19369 (17)0.0574 (7)
H23A0.30460.24370.23080.069*
H23B0.44240.30330.17870.069*
C181.0215 (3)0.0589 (3)0.52212 (17)0.0612 (7)
H181.02860.12670.47550.073*
C90.5968 (3)0.1523 (3)0.40544 (16)0.0504 (6)
H9A0.53820.15270.46010.060*
H9B0.69650.20430.42470.060*
C220.8643 (3)0.0867 (3)0.60759 (16)0.0566 (7)
H220.76410.11950.61880.068*
C60.8748 (3)0.0747 (3)0.14105 (18)0.0610 (7)
H60.92110.09580.08650.073*
C290.2389 (3)0.2353 (3)0.02380 (18)0.0629 (7)
H290.24550.33140.03020.075*
C260.2199 (3)0.0472 (3)0.0027 (2)0.0668 (8)
H260.21330.14320.00420.080*
C70.7211 (3)0.1231 (3)0.14706 (16)0.0547 (6)
H70.66190.17450.09690.066*
C110.5633 (3)0.2891 (3)0.24806 (17)0.0578 (7)
H110.67520.28440.25000.069*
C211.0043 (4)0.1389 (3)0.66143 (19)0.0682 (8)
H210.99760.20610.70850.082*
C120.4683 (3)0.3586 (3)0.1721 (2)0.0697 (8)
H120.51610.39820.12290.084*
C201.1531 (4)0.0928 (3)0.6464 (2)0.0698 (8)
H201.24740.12710.68380.084*
C50.9610 (3)0.0040 (3)0.21408 (18)0.0580 (7)
H51.06440.03550.20830.070*
C280.1581 (3)0.1783 (4)0.0613 (2)0.0754 (9)
H280.11000.23590.11140.090*
C140.2335 (3)0.3088 (3)0.2416 (2)0.0639 (7)
H140.12200.31660.24030.077*
C130.3036 (3)0.3686 (3)0.1697 (2)0.0684 (8)
H130.23960.41600.11920.082*
C191.1621 (3)0.0052 (3)0.5751 (2)0.0710 (8)
H191.26290.03500.56280.085*
C270.1485 (3)0.0374 (4)0.0721 (2)0.0730 (9)
H270.09420.00120.12960.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0624 (10)0.0862 (14)0.0635 (10)0.0224 (10)0.0228 (9)0.0056 (11)
N10.0469 (11)0.0475 (12)0.0406 (10)0.0077 (9)0.0037 (8)0.0046 (9)
C240.0411 (12)0.0487 (15)0.0428 (13)0.0069 (11)0.0039 (10)0.0058 (11)
C80.0445 (12)0.0402 (13)0.0387 (11)0.0010 (11)0.0037 (10)0.0007 (11)
C30.0425 (12)0.0363 (12)0.0375 (11)0.0003 (10)0.0016 (9)0.0013 (10)
C160.0670 (15)0.0468 (14)0.0406 (12)0.0041 (13)0.0048 (11)0.0017 (12)
C100.0506 (14)0.0403 (13)0.0462 (13)0.0024 (11)0.0014 (11)0.0099 (11)
C150.0539 (15)0.0581 (16)0.0539 (14)0.0019 (13)0.0041 (12)0.0131 (14)
C40.0485 (14)0.0491 (15)0.0516 (14)0.0032 (11)0.0027 (11)0.0018 (12)
C20.0498 (13)0.0458 (14)0.0346 (11)0.0052 (11)0.0048 (10)0.0015 (11)
C10.0499 (13)0.0468 (14)0.0434 (12)0.0058 (12)0.0067 (11)0.0027 (12)
C250.0567 (15)0.0540 (16)0.0462 (14)0.0064 (12)0.0073 (11)0.0014 (13)
C170.0633 (15)0.0434 (14)0.0367 (11)0.0057 (12)0.0003 (11)0.0033 (11)
C230.0633 (16)0.0510 (16)0.0540 (14)0.0171 (13)0.0019 (12)0.0020 (13)
C180.0718 (17)0.0545 (16)0.0521 (15)0.0139 (14)0.0049 (13)0.0046 (13)
C90.0571 (14)0.0504 (15)0.0425 (13)0.0005 (12)0.0047 (11)0.0086 (12)
C220.0729 (17)0.0547 (16)0.0402 (13)0.0072 (13)0.0035 (12)0.0010 (13)
C60.0639 (16)0.0716 (18)0.0511 (13)0.0114 (15)0.0203 (13)0.0025 (14)
C290.0678 (17)0.0570 (17)0.0587 (16)0.0054 (14)0.0047 (13)0.0108 (14)
C260.0690 (17)0.0654 (18)0.0652 (18)0.0027 (15)0.0081 (14)0.0138 (15)
C70.0608 (15)0.0583 (16)0.0446 (12)0.0040 (13)0.0075 (11)0.0074 (13)
C110.0532 (15)0.0559 (16)0.0630 (16)0.0005 (13)0.0061 (13)0.0048 (14)
C210.095 (2)0.0543 (16)0.0498 (15)0.0009 (16)0.0057 (15)0.0088 (14)
C120.0756 (19)0.0597 (17)0.0717 (17)0.0039 (15)0.0063 (15)0.0158 (15)
C200.0749 (19)0.0567 (18)0.0686 (18)0.0057 (15)0.0152 (15)0.0032 (16)
C50.0512 (14)0.0616 (17)0.0641 (16)0.0033 (13)0.0176 (13)0.0075 (14)
C280.077 (2)0.089 (2)0.0528 (17)0.0057 (18)0.0112 (14)0.0182 (17)
C140.0502 (15)0.0652 (17)0.0713 (17)0.0067 (14)0.0049 (13)0.0105 (15)
C130.0723 (19)0.0517 (16)0.0732 (18)0.0061 (15)0.0120 (15)0.0052 (16)
C190.0628 (17)0.0706 (19)0.0736 (17)0.0133 (15)0.0062 (14)0.0036 (17)
C270.0704 (19)0.097 (3)0.0476 (15)0.0017 (17)0.0012 (13)0.0128 (17)
Geometric parameters (Å, º) top
O1—C11.218 (3)C18—C191.380 (4)
N1—C11.366 (3)C18—H180.9300
N1—C81.407 (3)C9—H9A0.9700
N1—C231.449 (3)C9—H9B0.9700
C24—C251.379 (3)C22—C211.375 (3)
C24—C291.383 (3)C22—H220.9300
C24—C231.507 (3)C6—C51.374 (4)
C8—C71.379 (3)C6—C71.380 (3)
C8—C31.388 (3)C6—H60.9300
C3—C41.384 (3)C29—C281.379 (4)
C3—C21.512 (3)C29—H290.9300
C16—C171.510 (3)C26—C271.379 (4)
C16—C21.553 (3)C26—H260.9300
C16—H16A0.9700C7—H70.9300
C16—H16B0.9700C11—C121.386 (3)
C10—C111.383 (3)C11—H110.9300
C10—C151.388 (3)C21—C201.366 (4)
C10—C91.514 (3)C21—H210.9300
C15—C141.384 (3)C12—C131.372 (4)
C15—H150.9300C12—H120.9300
C4—C51.387 (3)C20—C191.381 (4)
C4—H40.9300C20—H200.9300
C2—C11.532 (3)C5—H50.9300
C2—C91.539 (3)C28—C271.365 (4)
C25—C261.375 (3)C28—H280.9300
C25—H250.9300C14—C131.367 (4)
C17—C221.383 (3)C14—H140.9300
C17—C181.389 (3)C13—H130.9300
C23—H23A0.9700C19—H190.9300
C23—H23B0.9700C27—H270.9300
C1—N1—C8110.93 (17)C10—C9—C2115.07 (18)
C1—N1—C23124.39 (19)C10—C9—H9A108.5
C8—N1—C23124.65 (19)C2—C9—H9A108.5
C25—C24—C29118.1 (2)C10—C9—H9B108.5
C25—C24—C23122.5 (2)C2—C9—H9B108.5
C29—C24—C23119.4 (2)H9A—C9—H9B107.5
C7—C8—C3122.2 (2)C21—C22—C17121.4 (3)
C7—C8—N1128.2 (2)C21—C22—H22119.3
C3—C8—N1109.58 (17)C17—C22—H22119.3
C4—C3—C8119.18 (19)C5—C6—C7121.3 (2)
C4—C3—C2131.7 (2)C5—C6—H6119.3
C8—C3—C2109.10 (17)C7—C6—H6119.3
C17—C16—C2116.90 (19)C28—C29—C24121.1 (3)
C17—C16—H16A108.1C28—C29—H29119.5
C2—C16—H16A108.1C24—C29—H29119.5
C17—C16—H16B108.1C25—C26—C27120.2 (3)
C2—C16—H16B108.1C25—C26—H26119.9
H16A—C16—H16B107.3C27—C26—H26119.9
C11—C10—C15117.9 (2)C8—C7—C6117.6 (2)
C11—C10—C9122.0 (2)C8—C7—H7121.2
C15—C10—C9120.1 (2)C6—C7—H7121.2
C14—C15—C10120.8 (3)C10—C11—C12121.2 (2)
C14—C15—H15119.6C10—C11—H11119.4
C10—C15—H15119.6C12—C11—H11119.4
C3—C4—C5119.0 (2)C20—C21—C22120.6 (3)
C3—C4—H4120.5C20—C21—H21119.7
C5—C4—H4120.5C22—C21—H21119.7
C3—C2—C1101.66 (17)C13—C12—C11119.8 (3)
C3—C2—C9113.73 (18)C13—C12—H12120.1
C1—C2—C9110.30 (19)C11—C12—H12120.1
C3—C2—C16113.32 (18)C21—C20—C19119.4 (3)
C1—C2—C16106.07 (17)C21—C20—H20120.3
C9—C2—C16111.05 (18)C19—C20—H20120.3
O1—C1—N1124.8 (2)C6—C5—C4120.7 (2)
O1—C1—C2126.4 (2)C6—C5—H5119.7
N1—C1—C2108.73 (19)C4—C5—H5119.7
C26—C25—C24120.9 (2)C27—C28—C29120.2 (3)
C26—C25—H25119.5C27—C28—H28119.9
C24—C25—H25119.5C29—C28—H28119.9
C22—C17—C18117.4 (2)C13—C14—C15120.3 (2)
C22—C17—C16121.5 (2)C13—C14—H14119.8
C18—C17—C16121.0 (2)C15—C14—H14119.8
N1—C23—C24114.57 (19)C14—C13—C12119.9 (3)
N1—C23—H23A108.6C14—C13—H13120.0
C24—C23—H23A108.6C12—C13—H13120.0
N1—C23—H23B108.6C20—C19—C18119.9 (3)
C24—C23—H23B108.6C20—C19—H19120.0
H23A—C23—H23B107.6C18—C19—H19120.0
C19—C18—C17121.3 (3)C28—C27—C26119.5 (3)
C19—C18—H18119.4C28—C27—H27120.2
C17—C18—H18119.4C26—C27—H27120.2

Experimental details

Crystal data
Chemical formulaC29H25NO
Mr403.50
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.3387 (9), 9.6266 (10), 13.9398 (14)
β (°) 99.442 (2)
V3)1103.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4797, 2073, 1731
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.05
No. of reflections2073
No. of parameters281
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.11

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors are grateful to the National Science Foundation (BL, No. 21072019) for support of this work and Dr Maosen Yuan of Northwest A & F University for the data collection and structure determination.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Feng, D. M., Qi, M., Lang, H. Y. & Steel, P. J. (1997). Bull. Soc. Chim. Belg. 106, 419–423.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, S. B., Zhao, Y. F., Zhang, G. G., Lv, Y. X., Zhang, N. & Gong, P. (2011). Eur. J. Med. Chem. 8, 3509–3518.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds