organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-(3-Nitro­phen­yl)-9,10-di­hydro-7H-benzo[h]cyclo­penta­[b]quinolin-8(11H)-one

aSchool of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
*Correspondence e-mail: ltj2008@xznu.edu.cn

(Received 8 October 2011; accepted 20 October 2011; online 29 October 2011)

In the title compound, C22H16N2O3, the naphthalene ring, the 1,4-dihydro­pyridine ring and the cyclo­pent-2-enone ring are nearly coplanar, with the dihedral angles between the neighbouring rings being 1.93 (11) and 2.30 (9)°, respectively. The benzene ring group at position 7 and the 1,4-dihydro­pyridine ring form a dihedral angle of 78.75 (4)°. Inter­molecular N—H⋯O hydrogen bonds and C—H⋯π inter­actions stabilize the crystal packing.

Related literature

For the medicinal use of 1,4-dihydro­pyridine derivatives, see: Zheng et al. (2011[Zheng, L., Yin, X. J., Yang, C. L., Li, Y. & Yin, S. F. (2011). Chem. Nat. Compd, 47, 170-175.]); Ginsberg & Kummer (2011[Ginsberg, M. & Kummer, C. (2011). WO Patent No. 2011034896.]); Nadaraj et al. (2009[Nadaraj, V., Thamarai Selvi, S. & Mohan, S. (2009). Eur. J. Med. Chem. 44, 976-980.]); Husson et al. (2011[Husson, H.-P., Giorgi-Renault, S., Tratrat, C., Atassi, G., Pierre, A., Renard, P. & Pfeiffer, B. (2011). Eur. Patent No. 1103554.]). For the preparation of the title compound, see: Heravi et al. (2010[Heravi, M. M., Hosseini, T., Derikvand, F., Beheshtiha, S. Y. S. & Bamoharram, F. F. (2010). Synth. Commun. 40, 2402-2406.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N2O3

  • Mr = 356.37

  • Monoclinic, P 21 /c

  • a = 10.256 (1) Å

  • b = 13.7570 (14) Å

  • c = 11.9830 (12) Å

  • β = 104.827 (5)°

  • V = 1634.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClearSM Expert; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClearSM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.977, Tmax = 0.983

  • 16937 measured reflections

  • 3897 independent reflections

  • 3094 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.130

  • S = 1.12

  • 3897 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the ring of C11–C16.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.881 (19) 2.07 (2) 2.9307 (17) 165.9 (18)
C21—H21⋯Cgii 0.95 2.69 3.5090 (19) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClearSM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClearSM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClearSM Expert; data reduction: CrystalClearSM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,4-dihydropyridine (1,4-DHP) derivatives exhibits various bioactivities, including sedative-hypnotic activity (Zheng et al. 2011), inhibition of the α 4-integrin-paxillin interaction (Ginsberg et al. 2011), anti-microbial activities (Nadaraj et al. 2009),and antitumor activity (Husson et al. 2011). These reports inspired us to study the relationship between their structures and activities. During the synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives, the title compound, (I) was isolated and its structure was determined by X-ray diffraction. Herein we report its crystal structure.

In the molecular structure (Fig. 1), the naphthalene ring, the 1,4-dihydropyridine ring and the cyclopent-2-enone ring adopt planar conformations with RMS of 0.0201 Å, 0.0235 Å and 0.0058 Å, respectively. The largest deviation of these rings are 0.033 (1) Å(C2), 0.038 (1) Å(C3), 0.008 (1) Å(C5), respectively. The fused ring system is almost coplanar, for the dihedral angle between the neighboring rings are 1.93 (0.11) ° and 2.30 (9)° respectively. The planar 3-nitrophenyl ring at position 7 and the 1,4-dihydropyridine ring forms a dihedral angle of 78.75 (4)°. The crystal packing is stablized by the intermolecular N—H···O hydrogen bond and C—H···π interactions (Fig. 2, Table 1).

Related literature top

For the medicinal use of 1,4-dihydropyridine derivatives, see: Zheng et al. (2011); Ginsberg et al. (2011); Nadaraj et al. (2009); Husson et al. (2011). For the preparation of the title compound, see: Heravi et al. (2010).

Experimental top

The title compound was synthesized according to the procedure (Heravi et al. 2010). A round-bottomed flask was charged with 3-nitrobenzaldehyde (1 mmol), cyclopentane-1,3-dione (1 mmol), 1-naphtylamine (1 mmol), acetic acid (5 ml), and H6P2W18O62.18H2O (0.01 mmol). The reaction mixture was stirred until completion (monitored by TLC). Then the mixture was poured into ice water. The precipitated products were separated by filtration, washed with water, recrystallized in a dimethylformamide-ethanol (DMF-EtOH) solution. The recrystallization gave single-crystals suitable for X-ray diffraction.

Refinement top

The hydrogen atom bonded to the nitrogen atom was positioned from a Fourier difference map refined freely. All other H atoms were placed in calculated positions, with C—H = 0.95 Å, 0.99Å or 1.00Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClearSM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClearSM Expert (Rigaku/MSC, 2009); data reduction: CrystalClearSM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Cg is the centroid of the ring of C11/C12/C13/C14/C15/C16.
[Figure 2] Fig. 2. The packing diagram of (I), Hydrogen bond represented by the dashed line.
7-(3-Nitrophenyl)-9,10-dihydro-7H- benzo[h]cyclopenta[b]quinolin-8(11H)-one top
Crystal data top
C22H16N2O3F(000) = 744
Mr = 356.37Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 4977 reflections
a = 10.256 (1) Åθ = 1.8–28.0°
b = 13.7570 (14) ŵ = 0.10 mm1
c = 11.9830 (12) ÅT = 113 K
β = 104.827 (5)°Prism, colorless
V = 1634.4 (3) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD
diffractometer
3897 independent reflections
Radiation source: rotating anode3094 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.046
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClearSM Expert; Rigaku/MSC, 2009)
k = 1816
Tmin = 0.977, Tmax = 0.983l = 1415
16937 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.0399P]
where P = (Fo2 + 2Fc2)/3
3897 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H16N2O3V = 1634.4 (3) Å3
Mr = 356.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.256 (1) ŵ = 0.10 mm1
b = 13.7570 (14) ÅT = 113 K
c = 11.9830 (12) Å0.24 × 0.20 × 0.18 mm
β = 104.827 (5)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3897 independent reflections
Absorption correction: multi-scan
(CrystalClearSM Expert; Rigaku/MSC, 2009)
3094 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.046
16937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.27 e Å3
3897 reflectionsΔρmin = 0.21 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49879 (12)0.27956 (8)0.21675 (10)0.0302 (3)
O20.22400 (14)0.05360 (8)0.50038 (12)0.0396 (3)
O30.05702 (14)0.00451 (9)0.36064 (13)0.0555 (5)
N10.40366 (13)0.59115 (10)0.34262 (12)0.0204 (3)
N20.14286 (15)0.06518 (10)0.40583 (15)0.0333 (4)
C10.32624 (14)0.56590 (10)0.42002 (13)0.0182 (3)
C20.30280 (15)0.46920 (11)0.44074 (14)0.0210 (3)
C30.36250 (15)0.38501 (11)0.38630 (13)0.0205 (3)
H30.43150.35240.44940.025*
C40.43418 (15)0.42402 (11)0.30100 (14)0.0209 (3)
C50.45220 (14)0.52071 (11)0.28614 (13)0.0192 (3)
C60.53292 (16)0.54216 (11)0.20092 (14)0.0237 (4)
H6A0.61770.57660.23820.028*
H6B0.48050.58200.13600.028*
C70.56175 (17)0.44056 (11)0.15962 (15)0.0249 (4)
H7A0.52190.43360.07560.030*
H7B0.66010.42900.17610.030*
C80.49657 (16)0.36910 (12)0.22699 (14)0.0232 (4)
C90.22432 (16)0.44723 (11)0.51891 (14)0.0261 (4)
H90.20630.38110.53220.031*
C100.17360 (16)0.51798 (11)0.57591 (14)0.0269 (4)
H100.12100.50040.62750.032*
C110.19893 (15)0.61746 (11)0.55856 (13)0.0212 (3)
C120.27526 (14)0.64231 (10)0.47886 (13)0.0191 (3)
C130.29923 (16)0.74235 (11)0.46203 (14)0.0226 (4)
H130.34810.76070.40790.027*
C140.25244 (15)0.81264 (12)0.52334 (14)0.0251 (4)
H140.26960.87920.51120.030*
C150.17967 (16)0.78757 (12)0.60362 (14)0.0251 (4)
H150.14930.83690.64640.030*
C160.15242 (15)0.69215 (12)0.62036 (14)0.0248 (4)
H160.10180.67570.67390.030*
C170.25581 (15)0.30911 (11)0.33354 (13)0.0202 (3)
C180.24757 (15)0.22350 (11)0.39195 (14)0.0219 (4)
H180.30820.21140.46500.026*
C190.14954 (15)0.15545 (11)0.34252 (14)0.0235 (4)
C200.05978 (16)0.16991 (12)0.23582 (15)0.0289 (4)
H200.00610.12230.20320.035*
C210.06897 (17)0.25572 (13)0.17830 (15)0.0307 (4)
H210.00880.26750.10490.037*
C220.16534 (16)0.32482 (12)0.22678 (14)0.0264 (4)
H220.16960.38370.18650.032*
H10.4201 (19)0.6518 (14)0.3272 (16)0.041 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0399 (7)0.0183 (6)0.0395 (8)0.0010 (5)0.0233 (6)0.0023 (5)
O20.0559 (8)0.0246 (7)0.0386 (8)0.0027 (6)0.0127 (7)0.0029 (6)
O30.0480 (8)0.0283 (7)0.0848 (12)0.0197 (6)0.0072 (8)0.0018 (7)
N10.0254 (7)0.0159 (6)0.0234 (8)0.0002 (5)0.0123 (6)0.0007 (5)
N20.0336 (8)0.0184 (7)0.0514 (11)0.0038 (6)0.0173 (8)0.0044 (7)
C10.0190 (7)0.0197 (8)0.0172 (8)0.0000 (6)0.0069 (6)0.0007 (6)
C20.0241 (8)0.0196 (8)0.0208 (9)0.0011 (6)0.0082 (7)0.0002 (6)
C30.0240 (8)0.0184 (8)0.0207 (8)0.0007 (6)0.0086 (7)0.0012 (6)
C40.0234 (7)0.0194 (8)0.0217 (9)0.0008 (6)0.0094 (7)0.0007 (6)
C50.0200 (7)0.0201 (8)0.0183 (8)0.0017 (6)0.0066 (6)0.0013 (6)
C60.0288 (8)0.0211 (8)0.0256 (9)0.0012 (7)0.0148 (7)0.0019 (7)
C70.0299 (8)0.0232 (8)0.0259 (9)0.0027 (7)0.0150 (7)0.0001 (7)
C80.0253 (8)0.0229 (8)0.0233 (9)0.0011 (7)0.0095 (7)0.0001 (7)
C90.0347 (9)0.0199 (8)0.0287 (10)0.0043 (7)0.0172 (8)0.0005 (7)
C100.0340 (9)0.0246 (9)0.0277 (10)0.0037 (7)0.0182 (8)0.0013 (7)
C110.0211 (7)0.0230 (8)0.0207 (9)0.0005 (6)0.0074 (7)0.0013 (7)
C120.0189 (7)0.0188 (8)0.0199 (8)0.0008 (6)0.0056 (6)0.0011 (6)
C130.0218 (8)0.0215 (8)0.0266 (9)0.0005 (6)0.0101 (7)0.0008 (7)
C140.0260 (8)0.0188 (8)0.0318 (10)0.0004 (6)0.0098 (7)0.0031 (7)
C150.0240 (8)0.0245 (8)0.0283 (10)0.0013 (7)0.0093 (7)0.0069 (7)
C160.0233 (8)0.0295 (9)0.0236 (9)0.0005 (7)0.0099 (7)0.0032 (7)
C170.0222 (8)0.0189 (8)0.0222 (9)0.0031 (6)0.0110 (7)0.0018 (6)
C180.0230 (8)0.0195 (8)0.0246 (9)0.0018 (6)0.0085 (7)0.0012 (6)
C190.0235 (8)0.0177 (8)0.0325 (10)0.0001 (6)0.0129 (7)0.0045 (7)
C200.0226 (8)0.0311 (9)0.0345 (10)0.0027 (7)0.0101 (8)0.0149 (8)
C210.0246 (8)0.0416 (11)0.0248 (10)0.0045 (8)0.0043 (7)0.0041 (8)
C220.0257 (8)0.0294 (9)0.0261 (9)0.0039 (7)0.0099 (7)0.0014 (7)
Geometric parameters (Å, º) top
O1—C81.2387 (18)C9—H90.9500
O2—N21.2325 (18)C10—C111.418 (2)
O3—N21.2333 (18)C10—H100.9500
N1—C51.3481 (19)C11—C161.419 (2)
N1—C11.4101 (19)C11—C121.423 (2)
N1—H10.881 (19)C12—C131.421 (2)
N2—C191.466 (2)C13—C141.373 (2)
C1—C21.385 (2)C13—H130.9500
C1—C121.437 (2)C14—C151.403 (2)
C2—C91.415 (2)C14—H140.9500
C2—C31.532 (2)C15—C161.368 (2)
C3—C41.503 (2)C15—H150.9500
C3—C171.528 (2)C16—H160.9500
C3—H31.0000C17—C181.384 (2)
C4—C51.361 (2)C17—C221.392 (2)
C4—C81.434 (2)C18—C191.390 (2)
C5—C61.499 (2)C18—H180.9500
C6—C71.536 (2)C19—C201.386 (2)
C6—H6A0.9900C20—C211.382 (2)
C6—H6B0.9900C20—H200.9500
C7—C81.530 (2)C21—C221.387 (2)
C7—H7A0.9900C21—H210.9500
C7—H7B0.9900C22—H220.9500
C9—C101.366 (2)
C5—N1—C1119.70 (13)C2—C9—H9118.9
C5—N1—H1117.4 (13)C9—C10—C11120.44 (15)
C1—N1—H1122.9 (13)C9—C10—H10119.8
O2—N2—O3123.67 (15)C11—C10—H10119.8
O2—N2—C19118.37 (14)C10—C11—C16121.59 (15)
O3—N2—C19117.95 (16)C10—C11—C12118.89 (14)
C2—C1—N1120.48 (14)C16—C11—C12119.51 (14)
C2—C1—C12120.86 (14)C13—C12—C11118.21 (14)
N1—C1—C12118.65 (13)C13—C12—C1122.74 (14)
C1—C2—C9118.55 (14)C11—C12—C1119.04 (13)
C1—C2—C3122.89 (14)C14—C13—C12120.60 (15)
C9—C2—C3118.52 (13)C14—C13—H13119.7
C4—C3—C17112.70 (12)C12—C13—H13119.7
C4—C3—C2109.77 (13)C13—C14—C15120.91 (15)
C17—C3—C2111.79 (12)C13—C14—H14119.5
C4—C3—H3107.4C15—C14—H14119.5
C17—C3—H3107.4C16—C15—C14120.06 (15)
C2—C3—H3107.4C16—C15—H15120.0
C5—C4—C8109.70 (14)C14—C15—H15120.0
C5—C4—C3122.99 (14)C15—C16—C11120.67 (15)
C8—C4—C3127.29 (14)C15—C16—H16119.7
N1—C5—C4123.85 (15)C11—C16—H16119.7
N1—C5—C6122.65 (13)C18—C17—C22118.99 (14)
C4—C5—C6113.49 (13)C18—C17—C3120.16 (13)
C5—C6—C7103.04 (12)C22—C17—C3120.85 (14)
C5—C6—H6A111.2C17—C18—C19119.25 (15)
C7—C6—H6A111.2C17—C18—H18120.4
C5—C6—H6B111.2C19—C18—H18120.4
C7—C6—H6B111.2C20—C19—C18122.26 (15)
H6A—C6—H6B109.1C20—C19—N2119.42 (15)
C8—C7—C6105.57 (13)C18—C19—N2118.32 (15)
C8—C7—H7A110.6C21—C20—C19117.95 (15)
C6—C7—H7A110.6C21—C20—H20121.0
C8—C7—H7B110.6C19—C20—H20121.0
C6—C7—H7B110.6C20—C21—C22120.57 (16)
H7A—C7—H7B108.8C20—C21—H21119.7
O1—C8—C4127.41 (15)C22—C21—H21119.7
O1—C8—C7124.41 (14)C21—C22—C17120.97 (16)
C4—C8—C7108.18 (13)C21—C22—H22119.5
C10—C9—C2122.19 (15)C17—C22—H22119.5
C10—C9—H9118.9
C5—N1—C1—C21.7 (2)C10—C11—C12—C13179.71 (13)
C5—N1—C1—C12179.79 (13)C16—C11—C12—C131.6 (2)
N1—C1—C2—C9179.88 (13)C10—C11—C12—C11.1 (2)
C12—C1—C2—C91.7 (2)C16—C11—C12—C1177.64 (13)
N1—C1—C2—C32.5 (2)C2—C1—C12—C13178.67 (14)
C12—C1—C2—C3175.93 (13)N1—C1—C12—C130.2 (2)
C1—C2—C3—C45.9 (2)C2—C1—C12—C110.5 (2)
C9—C2—C3—C4176.43 (14)N1—C1—C12—C11178.97 (13)
C1—C2—C3—C17131.76 (15)C11—C12—C13—C141.5 (2)
C9—C2—C3—C1750.61 (19)C1—C12—C13—C14177.67 (14)
C17—C3—C4—C5131.30 (15)C12—C13—C14—C150.2 (2)
C2—C3—C4—C56.0 (2)C13—C14—C15—C161.1 (2)
C17—C3—C4—C850.8 (2)C14—C15—C16—C111.0 (2)
C2—C3—C4—C8176.06 (14)C10—C11—C16—C15179.01 (14)
C1—N1—C5—C41.8 (2)C12—C11—C16—C150.3 (2)
C1—N1—C5—C6178.78 (13)C4—C3—C17—C18134.40 (14)
C8—C4—C5—N1179.14 (14)C2—C3—C17—C18101.41 (16)
C3—C4—C5—N12.6 (2)C4—C3—C17—C2245.87 (19)
C8—C4—C5—C61.35 (18)C2—C3—C17—C2278.32 (18)
C3—C4—C5—C6176.90 (13)C22—C17—C18—C190.1 (2)
N1—C5—C6—C7179.01 (14)C3—C17—C18—C19179.86 (13)
C4—C5—C6—C71.47 (17)C17—C18—C19—C200.5 (2)
C5—C6—C7—C80.98 (16)C17—C18—C19—N2179.86 (14)
C5—C4—C8—O1179.08 (15)O2—N2—C19—C20179.70 (15)
C3—C4—C8—O12.8 (3)O3—N2—C19—C200.5 (2)
C5—C4—C8—C70.62 (18)O2—N2—C19—C180.3 (2)
C3—C4—C8—C7177.54 (14)O3—N2—C19—C18178.90 (15)
C6—C7—C8—O1180.00 (15)C18—C19—C20—C210.5 (2)
C6—C7—C8—C40.29 (17)N2—C19—C20—C21179.87 (14)
C1—C2—C9—C101.3 (2)C19—C20—C21—C220.1 (2)
C3—C2—C9—C10176.39 (14)C20—C21—C22—C170.7 (2)
C2—C9—C10—C110.3 (3)C18—C17—C22—C210.7 (2)
C9—C10—C11—C16177.23 (15)C3—C17—C22—C21179.55 (14)
C9—C10—C11—C121.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the ring of C11/C12/C13/C14/C15/C16. [ok as edited?]
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881 (19)2.07 (2)2.9307 (17)165.9 (18)
C21—H21···Cgii0.952.693.5090 (19)145
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H16N2O3
Mr356.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.256 (1), 13.7570 (14), 11.9830 (12)
β (°) 104.827 (5)
V3)1634.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClearSM Expert; Rigaku/MSC, 2009)
Tmin, Tmax0.977, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
16937, 3897, 3094
Rint0.046
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.130, 1.12
No. of reflections3897
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: CrystalClearSM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the ring of C11/C12/C13/C14/C15/C16. [ok as edited?]
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881 (19)2.07 (2)2.9307 (17)165.9 (18)
C21—H21···Cgii0.952.693.5090 (19)145.0
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

References

First citationGinsberg, M. & Kummer, C. (2011). WO Patent No. 2011034896.  Google Scholar
First citationHeravi, M. M., Hosseini, T., Derikvand, F., Beheshtiha, S. Y. S. & Bamoharram, F. F. (2010). Synth. Commun. 40, 2402–2406.  Web of Science CrossRef CAS Google Scholar
First citationHusson, H.-P., Giorgi-Renault, S., Tratrat, C., Atassi, G., Pierre, A., Renard, P. & Pfeiffer, B. (2011). Eur. Patent No. 1103554.  Google Scholar
First citationNadaraj, V., Thamarai Selvi, S. & Mohan, S. (2009). Eur. J. Med. Chem. 44, 976–980.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2009). CrystalClearSM Expert. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, L., Yin, X. J., Yang, C. L., Li, Y. & Yin, S. F. (2011). Chem. Nat. Compd, 47, 170–175.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds