organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[N-(3-Amino-4-nitro­phen­yl)carboximido­yl]phenol

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, PO Box 1655, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 October 2011; accepted 11 October 2011; online 12 October 2011)

The title compound, C13H11N3O3, is essentially planar (r.m.s. for the 19 non-H atoms = 0.031 Å), a conformation stabilized in part by intra­molecular O—H⋯N and N—H⋯O hydrogen bonds. The configuration about the imine bond [1.2919 (12) Å] is E. The presence of N—H⋯O(nitro) hydrogen bonds leads to the formation of supra­molecular tapes in the crystal structure. These are connected into layers by ππ inter­actions [centroid–centroid distance = 3.6046 (6) Å] occurring between the hy­droxy- and amino-substituted benzene rings.

Related literature

For related work on Schiff bases, see: Prasath et al. (2010[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o3123.]); Shahverdizadeh & Tiekink (2011[Shahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798.]). For specialized crystallization techniques, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O3

  • Mr = 257.25

  • Triclinic, [P \overline 1]

  • a = 7.0961 (3) Å

  • b = 7.5168 (4) Å

  • c = 12.1627 (6) Å

  • α = 100.067 (4)°

  • β = 94.751 (4)°

  • γ = 115.011 (5)°

  • V = 569.87 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.92 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.748, Tmax = 1.000

  • 3654 measured reflections

  • 2231 independent reflections

  • 2105 reflections with I > 2σ(I)

  • Rint = 0.008

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.113

  • S = 1.07

  • 2231 reflections

  • 184 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.86 (1) 1.79 (1) 2.5933 (10) 154 (2)
N2—H1n⋯O2 0.89 (1) 2.06 (1) 2.6542 (11) 123 (1)
N2—H1n⋯O2i 0.89 (1) 2.42 (1) 3.1479 (11) 140 (1)
N2—H2n⋯O3ii 0.86 (1) 2.25 (1) 3.0746 (10) 161 (1)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural studies of Schiff bases (Prasath et al., 2010; Shahverdizadeh & Tiekink, 2011), the title compound was synthesized and characterized crystallographically.

The molecule of (I), Fig. 1, is planar with the r.m.s. deviation of the 19 non-hydrogen atoms being 0.031 Å; the maximum and minimum deviations are 0.066 (1) Å for atom C12 and -0.062 (1) Å for atom O2. The observed planar conformation is stabilized in part by intramolecular O—H···N and N—H···O hydrogen bonds, Table 1. The amino group is planar with the sum of the angles about the N2 atom being approximately 359°. The configuration about the N1 C7 bond [1.2919 (12) Å] is E, and the hydroxy and amino groups are syn.

In the crystal structure, supramolecular tapes in the (1 1 1) plane are formed via NH···O(nitro) hydrogen bonds, Fig. 2 and Table 1. The spine of the tape comprises alternating 12-membered rectangular {···HNC2NO}2 and square {···HNH···ONO}2 synthons. The tapes are connected into layers via ππ interactions occurring between the hydroxy- and amino-benzene rings [centroid(C1–C6)···centroid(C8–C13)i distance = 3.6046 (6) Å for i: 1 - x, -y, 1 - z].

Related literature top

For related work on Schiff bases, see: Prasath et al. (2010); Shahverdizadeh & Tiekink (2011). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Experimental top

A solution of 4-nitrobenzene-1,3-diamine (10 mmol) in methanol (50 ml) was added drop wise to a solution of salicylaldehyde (10 mmol) in methanol (50 ml). The mixture was stirred for 5 h. The resulting solution was filtered to obtain a Schiff base, and dried. Single crystals of the title compound were obtained by using the branched tube method (Harrowfield et al., 1996). Thus, the Schiff base (5 mmol) was placed in the arm to be heated. Methanol was added to fill both arms, and then the arm to be heated was placed in a bath at 333 K. After 2 days, orange crystals were deposited in the cooler arm, which were filtered, washed with water and air dried. Yield: 88%. M.pt.: 432 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The O—H and N—H H atoms were located from a difference map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with unconstrained Uiso(H) values.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular tape in the (1 1 1) plane and sustained by N—H···O hydrogen bonds (blue dashed lines) in the crystal structure of (I).
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I) highlighting the stacking of layers. The N—H···O and ππ interactions are shown as blue and purple dashed lines, respectively.
2-[N-(3-Amino-4-nitrophenyl)carboximidoyl]phenol top
Crystal data top
C13H11N3O3Z = 2
Mr = 257.25F(000) = 268
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.0961 (3) ÅCell parameters from 2525 reflections
b = 7.5168 (4) Åθ = 3.8–74.1°
c = 12.1627 (6) ŵ = 0.92 mm1
α = 100.067 (4)°T = 100 K
β = 94.751 (4)°Prism, orange
γ = 115.011 (5)°0.25 × 0.20 × 0.15 mm
V = 569.87 (5) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2231 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2105 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.008
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 3.8°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 99
Tmin = 0.748, Tmax = 1.000l = 1315
3654 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.0839P]
where P = (Fo2 + 2Fc2)/3
2231 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H11N3O3γ = 115.011 (5)°
Mr = 257.25V = 569.87 (5) Å3
Triclinic, P1Z = 2
a = 7.0961 (3) ÅCu Kα radiation
b = 7.5168 (4) ŵ = 0.92 mm1
c = 12.1627 (6) ÅT = 100 K
α = 100.067 (4)°0.25 × 0.20 × 0.15 mm
β = 94.751 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2231 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2105 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 1.000Rint = 0.008
3654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
2231 reflectionsΔρmin = 0.28 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40452 (11)0.27962 (11)0.59127 (6)0.0227 (2)
H1o0.495 (2)0.285 (3)0.5475 (13)0.062 (5)*
O21.09653 (11)0.36753 (12)0.05261 (6)0.0246 (2)
O31.31365 (10)0.29051 (11)0.14605 (6)0.0233 (2)
N10.71614 (12)0.25239 (11)0.50498 (7)0.0158 (2)
N20.78293 (13)0.40302 (13)0.14327 (7)0.0191 (2)
H1n0.840 (2)0.420 (2)0.0816 (9)0.039 (4)*
H2n0.6610 (15)0.4021 (18)0.1447 (10)0.026 (3)*
N31.15808 (12)0.32599 (12)0.13890 (7)0.0172 (2)
C10.47038 (15)0.22517 (14)0.68163 (8)0.0168 (2)
C20.36032 (15)0.21048 (14)0.77211 (8)0.0197 (2)
H20.24080.23720.76900.024*
C30.42483 (16)0.15713 (14)0.86643 (8)0.0209 (2)
H30.35000.14910.92810.025*
C40.59855 (15)0.11503 (14)0.87207 (8)0.0202 (2)
H40.64050.07630.93660.024*
C50.70904 (15)0.13020 (14)0.78289 (8)0.0182 (2)
H50.82830.10310.78700.022*
C60.64775 (14)0.18514 (13)0.68626 (8)0.0155 (2)
C70.76768 (14)0.20111 (13)0.59454 (8)0.0161 (2)
H70.88640.17330.60040.019*
C80.83502 (14)0.27202 (13)0.41602 (8)0.0146 (2)
C90.76291 (14)0.32620 (13)0.32488 (8)0.0151 (2)
H90.64120.34910.32650.018*
C100.86365 (14)0.34913 (13)0.22862 (8)0.0150 (2)
C111.04545 (14)0.31485 (13)0.23212 (8)0.0150 (2)
C121.12150 (14)0.26527 (14)0.32711 (8)0.0168 (2)
H121.24630.24720.32810.020*
C131.01929 (15)0.24257 (14)0.41788 (8)0.0172 (2)
H131.07110.20760.48120.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (4)0.0344 (4)0.0206 (4)0.0173 (3)0.0055 (3)0.0120 (3)
O20.0274 (4)0.0366 (4)0.0191 (4)0.0190 (3)0.0095 (3)0.0143 (3)
O30.0206 (4)0.0328 (4)0.0259 (4)0.0180 (3)0.0105 (3)0.0104 (3)
N10.0162 (4)0.0170 (4)0.0136 (4)0.0067 (3)0.0031 (3)0.0038 (3)
N20.0185 (4)0.0274 (4)0.0183 (4)0.0143 (3)0.0067 (3)0.0102 (3)
N30.0166 (4)0.0173 (4)0.0184 (4)0.0077 (3)0.0051 (3)0.0047 (3)
C10.0167 (5)0.0163 (4)0.0164 (5)0.0068 (4)0.0018 (4)0.0036 (3)
C20.0183 (5)0.0190 (4)0.0219 (5)0.0088 (4)0.0054 (4)0.0028 (4)
C30.0241 (5)0.0193 (5)0.0166 (5)0.0066 (4)0.0082 (4)0.0032 (4)
C40.0240 (5)0.0201 (4)0.0146 (5)0.0079 (4)0.0023 (4)0.0052 (3)
C50.0182 (5)0.0179 (5)0.0181 (5)0.0076 (4)0.0023 (4)0.0048 (3)
C60.0157 (4)0.0141 (4)0.0149 (5)0.0054 (3)0.0019 (3)0.0027 (3)
C70.0153 (5)0.0160 (4)0.0170 (5)0.0071 (4)0.0031 (4)0.0036 (4)
C80.0135 (4)0.0140 (4)0.0146 (5)0.0049 (3)0.0030 (3)0.0021 (3)
C90.0140 (4)0.0157 (4)0.0163 (5)0.0073 (3)0.0030 (4)0.0033 (4)
C100.0153 (4)0.0132 (4)0.0153 (5)0.0055 (3)0.0025 (3)0.0031 (3)
C110.0148 (4)0.0153 (4)0.0151 (5)0.0063 (4)0.0046 (4)0.0039 (3)
C120.0138 (4)0.0179 (4)0.0195 (5)0.0079 (4)0.0025 (3)0.0038 (3)
C130.0171 (4)0.0207 (5)0.0152 (5)0.0094 (4)0.0019 (3)0.0056 (3)
Geometric parameters (Å, º) top
O1—C11.3519 (11)C4—C51.3830 (13)
O1—H1o0.858 (9)C4—H40.9500
O2—N31.2424 (10)C5—C61.4064 (13)
O3—N31.2403 (10)C5—H50.9500
N1—C71.2919 (12)C6—C71.4494 (13)
N1—C81.4163 (12)C7—H70.9500
N2—C101.3471 (12)C8—C91.3772 (13)
N2—H1n0.885 (9)C8—C131.4145 (13)
N2—H2n0.864 (8)C9—C101.4200 (12)
N3—C111.4346 (12)C9—H90.9500
C1—C21.3947 (14)C10—C111.4172 (13)
C1—C61.4115 (14)C11—C121.4079 (13)
C2—C31.3840 (14)C12—C131.3668 (13)
C2—H20.9500C12—H120.9500
C3—C41.3957 (15)C13—H130.9500
C3—H30.9500
C1—O1—H1o104.2 (12)C5—C6—C7119.76 (9)
C7—N1—C8121.52 (8)C1—C6—C7121.50 (9)
C10—N2—H1n122.2 (10)N1—C7—C6121.24 (9)
C10—N2—H2n117.9 (8)N1—C7—H7119.4
H1n—N2—H2n119.2 (12)C6—C7—H7119.4
O3—N3—O2121.55 (8)C9—C8—C13120.23 (9)
O3—N3—C11118.76 (8)C9—C8—N1115.89 (8)
O2—N3—C11119.68 (8)C13—C8—N1123.87 (8)
O1—C1—C2118.68 (9)C8—C9—C10122.45 (8)
O1—C1—C6121.45 (9)C8—C9—H9118.8
C2—C1—C6119.87 (9)C10—C9—H9118.8
C3—C2—C1120.17 (9)N2—C10—C11125.47 (8)
C3—C2—H2119.9N2—C10—C9118.58 (8)
C1—C2—H2119.9C11—C10—C9115.95 (8)
C2—C3—C4120.79 (9)C12—C11—C10121.18 (9)
C2—C3—H3119.6C12—C11—N3117.08 (8)
C4—C3—H3119.6C10—C11—N3121.73 (8)
C5—C4—C3119.36 (9)C13—C12—C11121.27 (9)
C5—C4—H4120.3C13—C12—H12119.4
C3—C4—H4120.3C11—C12—H12119.4
C4—C5—C6121.07 (9)C12—C13—C8118.89 (9)
C4—C5—H5119.5C12—C13—H13120.6
C6—C5—H5119.5C8—C13—H13120.6
C5—C6—C1118.73 (9)
O1—C1—C2—C3179.34 (8)N1—C8—C9—C10179.14 (7)
C6—C1—C2—C30.12 (15)C8—C9—C10—N2179.84 (8)
C1—C2—C3—C40.76 (15)C8—C9—C10—C110.63 (14)
C2—C3—C4—C51.05 (15)N2—C10—C11—C12177.90 (8)
C3—C4—C5—C60.70 (15)C9—C10—C11—C121.25 (13)
C4—C5—C6—C10.07 (14)N2—C10—C11—N33.06 (15)
C4—C5—C6—C7179.57 (8)C9—C10—C11—N3177.79 (7)
O1—C1—C6—C5179.66 (7)O3—N3—C11—C120.51 (13)
C2—C1—C6—C50.22 (14)O2—N3—C11—C12179.41 (7)
O1—C1—C6—C70.17 (15)O3—N3—C11—C10178.57 (8)
C2—C1—C6—C7179.27 (8)O2—N3—C11—C100.32 (13)
C8—N1—C7—C6178.78 (7)C10—C11—C12—C131.95 (14)
C5—C6—C7—N1179.59 (7)N3—C11—C12—C13177.14 (8)
C1—C6—C7—N10.10 (15)C11—C12—C13—C80.71 (14)
C7—N1—C8—C9179.58 (7)C9—C8—C13—C121.16 (14)
C7—N1—C8—C131.46 (15)N1—C8—C13—C12179.92 (8)
C13—C8—C9—C101.85 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.86 (1)1.79 (1)2.5933 (10)154 (2)
N2—H1n···O20.89 (1)2.06 (1)2.6542 (11)123 (1)
N2—H1n···O2i0.89 (1)2.42 (1)3.1479 (11)140 (1)
N2—H2n···O3ii0.86 (1)2.25 (1)3.0746 (10)161 (1)
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H11N3O3
Mr257.25
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0961 (3), 7.5168 (4), 12.1627 (6)
α, β, γ (°)100.067 (4), 94.751 (4), 115.011 (5)
V3)569.87 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.92
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.748, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3654, 2231, 2105
Rint0.008
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.113, 1.07
No. of reflections2231
No. of parameters184
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.858 (9)1.794 (11)2.5933 (10)154.3 (17)
N2—H1n···O20.885 (9)2.063 (13)2.6542 (11)123.3 (12)
N2—H1n···O2i0.885 (9)2.418 (11)3.1479 (11)140.1 (12)
N2—H2n···O3ii0.864 (8)2.245 (9)3.0746 (10)160.8 (11)
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

The authors thank Tabriz Azad University and the University of Malaya for support.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o3123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds