organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-5-methyl-3-nitro­pyridine

aSchool of Chemistry and Pharmaceutical Engineering, Shandong Polytechnic University, Jinan 250353, People's Republic of China
*Correspondence e-mail: datong_zhang2006@yahoo.com.cn

(Received 19 October 2011; accepted 23 October 2011; online 29 October 2011)

The title compound, C6H5ClN2O2, crystallizes with two independent mol­ecules in the asymmetric unit. Inter­molecular C—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For aplication of pyridines, see: Madsen-Duggan et al. (2010[Madsen-Duggan, C. B., Debenham, J. S., Walsh, T. F., Yan, L., Huo, P., Wang, J., Tong, X., Lao, J., Fong, T. M., Xiao, J. C., Huang, C. R., Shen, C. P., Stribling, D. S., Shearman, L. P., Strack, A. M., Goulet, M. T. & Hale, J. J. (2010). Bioorg. Med. Chem. Lett. 20, 3750-3754.]); Meurer et al. (2005[Meurer, L. C., Finke, P. E., Mills, S. G., Walsh, T. F., Toupence, R. B., Debenham, J. S., Goulet, M. T., Wang, J., Tong, X., Fong, T. M., Lao, J., Schaeffer, M. T., Chen, J., Shen, C. P., Sloan, S. D., Shearman, L. P., Strack, A. M. & Vander Ploeg, L. H. (2005). Bioorg. Med. Chem. Lett. 15, 645-651.]); Liégeois et al. (1993[Liégeois, F. F., Bruhwyler, J., Damas, J., Nguyen, T. P., Chleide, E. M., Mercier, M. G., Rogister, F. A. & Delarge, J. E. (1993). J. Med. Chem. 36, 2107-2114.]); Kagabu et al. (2005[Kagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409-413.]). For related structures, see: Ng (2010[Ng, S. W. (2010). Acta Cryst. E66, o1020.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5ClN2O2

  • Mr = 172.57

  • Orthorhombic, P n a 21

  • a = 21.435 (6) Å

  • b = 8.151 (2) Å

  • c = 8.494 (2) Å

  • V = 1484.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 298 K

  • 0.38 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 7071 measured reflections

  • 2134 independent reflections

  • 1749 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.06

  • 2134 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 139 Friedel pairs

  • Flack parameter: −0.08 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2i 0.93 2.51 3.243 (4) 136
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted pyridines are often used as pharmacophores in medicinal chemistry (Madsen-Duggan et al., 2010; Meurer et al., 2005). 2-Chloro-5-methyl-3-nitropyridine (I) is important intermediate in the synthesis of some bioactive products (Liégeois, et al., 1993; Kagabu, et al., 2005). The title compound was prepared by the chlorination of 2-hydroxy-5-methyl-3-nitropyridine with thionyl chloride. We present here the crystal structure of (I).

The title compound, C6H5ClN2O2, crystallizes with two independent molecules in the asymmetric unit. All bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Ng, 2010). C—H···O intermolecular hydrogen bonds stabilize the crystal structure.(Table 1).

Related literature top

For aplication of pyridines, see: Madsen-Duggan et al. (2010); Meurer et al. (2005); Liégeois et al. (1993); Kagabu et al. (2005). For related structures, see: Ng (2010). For standard bond lengths, see: Allen et al. (1987). .

Experimental top

The title compound was synthesized by the reaction of 2-hydroxy-5-methyl-3-nitropyridine (0.01 mol) with thionyl chloride (15 ml) in the presence of a small amount of DMF at reflux (3 h). After evaporation, the reaction residue was diluted with water. The aqueous solution was extracted with dichloromethane, and the organic phase was dried and evaporated to afford the title product in 92% isolated yield. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of the title compound in a hexane/methylene chloride mixture (1:1 v/v) at room temperature over a period of one week.

Refinement top

All H atoms were found on difference maps, with C—H = 0.93–0.96 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
2-Chloro-5-methyl-3-nitropyridine top
Crystal data top
C6H5ClN2O2F(000) = 704
Mr = 172.57Dx = 1.545 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1564 reflections
a = 21.435 (6) Åθ = 2.3–22.0°
b = 8.151 (2) ŵ = 0.46 mm1
c = 8.494 (2) ÅT = 298 K
V = 1484.0 (7) Å3Block, colorless
Z = 80.38 × 0.24 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1749 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ϕ and ω scansh = 2525
7071 measured reflectionsk = 99
2134 independent reflectionsl = 106
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0538P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2134 reflectionsΔρmax = 0.20 e Å3
201 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack (1983), 139 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (8)
Crystal data top
C6H5ClN2O2V = 1484.0 (7) Å3
Mr = 172.57Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 21.435 (6) ŵ = 0.46 mm1
b = 8.151 (2) ÅT = 298 K
c = 8.494 (2) Å0.38 × 0.24 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1749 reflections with I > 2σ(I)
7071 measured reflectionsRint = 0.023
2134 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.13 e Å3
2134 reflectionsAbsolute structure: Flack (1983), 139 Friedel pairs
201 parametersAbsolute structure parameter: 0.08 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64412 (4)0.34108 (9)0.69639 (8)0.0705 (3)
Cl20.64313 (4)0.85811 (9)0.70504 (10)0.0812 (3)
O10.50283 (10)0.0831 (3)0.5349 (5)0.1076 (10)
O20.51384 (10)0.3414 (3)0.5424 (4)0.0821 (7)
O30.48112 (10)0.7214 (3)0.4606 (4)0.0982 (9)
O40.52431 (11)0.6869 (3)0.6857 (4)0.0952 (8)
N10.70207 (10)0.2297 (3)0.4520 (3)0.0583 (6)
N20.53214 (10)0.2046 (3)0.5159 (3)0.0572 (6)
N30.69533 (11)0.7387 (3)0.4591 (3)0.0640 (6)
N40.52614 (12)0.7020 (3)0.5437 (4)0.0652 (7)
C10.64679 (12)0.2463 (3)0.5147 (3)0.0462 (6)
C20.59406 (10)0.1857 (3)0.4440 (3)0.0404 (6)
C30.59813 (12)0.1067 (3)0.3021 (3)0.0443 (6)
H3B0.56260.06320.25490.053*
C40.65528 (11)0.0926 (3)0.2303 (3)0.0467 (7)
C50.70548 (13)0.1550 (3)0.3124 (4)0.0591 (7)
H5A0.74470.14430.26700.071*
C60.66285 (14)0.0156 (4)0.0719 (4)0.0673 (8)
H6A0.63130.06650.05720.101*
H6B0.70330.03430.06470.101*
H6C0.65880.09820.00810.101*
C70.64127 (13)0.7526 (3)0.5297 (3)0.0513 (7)
C80.58714 (12)0.6920 (3)0.4649 (3)0.0479 (7)
C90.58893 (12)0.6180 (3)0.3199 (3)0.0482 (7)
H9A0.55250.57880.27400.058*
C100.64506 (11)0.6021 (3)0.2429 (3)0.0500 (8)
C110.69626 (13)0.6619 (4)0.3200 (4)0.0634 (8)
H11A0.73490.64800.27170.076*
C120.65035 (14)0.5240 (4)0.0832 (4)0.0687 (8)
H12A0.69200.48350.06840.103*
H12B0.64110.60400.00350.103*
H12C0.62130.43470.07550.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0895 (6)0.0727 (5)0.0492 (5)0.0039 (4)0.0117 (4)0.0149 (5)
Cl20.1138 (7)0.0757 (6)0.0542 (6)0.0059 (4)0.0185 (5)0.0151 (6)
O10.0742 (14)0.0879 (17)0.161 (3)0.0239 (14)0.0468 (16)0.006 (2)
O20.0775 (14)0.0813 (15)0.0875 (18)0.0228 (11)0.0239 (14)0.0082 (13)
O30.0574 (14)0.118 (2)0.119 (3)0.0116 (14)0.0001 (14)0.0181 (17)
O40.1076 (19)0.1013 (18)0.0766 (19)0.0100 (14)0.0405 (16)0.0110 (17)
N10.0416 (12)0.0721 (15)0.0613 (17)0.0080 (11)0.0047 (12)0.0035 (13)
N20.0503 (13)0.0667 (16)0.0547 (16)0.0012 (12)0.0115 (12)0.0037 (13)
N30.0563 (14)0.0801 (16)0.0555 (16)0.0106 (12)0.0083 (14)0.0021 (14)
N40.0648 (18)0.0604 (16)0.071 (2)0.0057 (13)0.0145 (16)0.0095 (15)
C10.0549 (15)0.0421 (13)0.0415 (16)0.0006 (11)0.0035 (13)0.0015 (12)
C20.0403 (13)0.0406 (13)0.0404 (16)0.0003 (10)0.0005 (11)0.0043 (11)
C30.0434 (14)0.0413 (13)0.0483 (16)0.0016 (10)0.0047 (13)0.0013 (12)
C40.0477 (14)0.0492 (13)0.0433 (19)0.0028 (11)0.0002 (13)0.0040 (12)
C50.0425 (14)0.0787 (19)0.0563 (19)0.0001 (13)0.0060 (14)0.0006 (17)
C60.0776 (18)0.074 (2)0.0503 (18)0.0075 (16)0.0082 (16)0.0046 (16)
C70.0661 (17)0.0473 (15)0.0406 (16)0.0024 (12)0.0097 (14)0.0052 (12)
C80.0515 (15)0.0444 (14)0.0479 (17)0.0034 (11)0.0037 (13)0.0076 (13)
C90.0498 (15)0.0443 (13)0.0505 (18)0.0049 (11)0.0076 (13)0.0049 (13)
C100.0553 (17)0.0498 (15)0.0449 (19)0.0011 (12)0.0034 (13)0.0076 (13)
C110.0455 (15)0.084 (2)0.061 (2)0.0082 (14)0.0031 (15)0.0033 (18)
C120.0832 (19)0.076 (2)0.0468 (18)0.0011 (17)0.0098 (16)0.0015 (16)
Geometric parameters (Å, º) top
Cl1—C11.727 (3)C4—C51.380 (4)
Cl2—C71.720 (3)C4—C61.494 (4)
O1—N21.184 (3)C5—H5A0.9300
O2—N21.203 (3)C6—H6A0.9600
O3—N41.206 (4)C6—H6B0.9600
O4—N41.213 (4)C6—H6C0.9600
N1—C11.306 (3)C7—C81.376 (4)
N1—C51.335 (4)C8—C91.372 (4)
N2—C21.469 (3)C9—C101.376 (4)
N3—C71.310 (4)C9—H9A0.9300
N3—C111.338 (4)C10—C111.368 (4)
N4—C81.471 (4)C10—C121.502 (4)
C1—C21.372 (3)C11—H11A0.9300
C2—C31.369 (4)C12—H12A0.9600
C3—C41.373 (4)C12—H12B0.9600
C3—H3B0.9300C12—H12C0.9600
C1—N1—C5117.3 (2)H6A—C6—H6B109.5
O1—N2—O2125.2 (3)C4—C6—H6C109.5
O1—N2—C2116.6 (3)H6A—C6—H6C109.5
O2—N2—C2118.0 (2)H6B—C6—H6C109.5
C7—N3—C11117.3 (2)N3—C7—C8122.1 (3)
O3—N4—O4124.7 (3)N3—C7—Cl2114.8 (2)
O3—N4—C8116.9 (3)C8—C7—Cl2123.1 (2)
O4—N4—C8118.4 (3)C9—C8—C7119.6 (3)
N1—C1—C2122.1 (3)C9—C8—N4117.2 (3)
N1—C1—Cl1116.2 (2)C7—C8—N4123.2 (3)
C2—C1—Cl1121.7 (2)C8—C9—C10119.5 (3)
C3—C2—C1120.1 (2)C8—C9—H9A120.2
C3—C2—N2118.2 (2)C10—C9—H9A120.2
C1—C2—N2121.6 (2)C11—C10—C9116.1 (3)
C2—C3—C4119.2 (2)C11—C10—C12121.5 (3)
C2—C3—H3B120.4C9—C10—C12122.4 (3)
C4—C3—H3B120.4N3—C11—C10125.3 (3)
C3—C4—C5116.1 (3)N3—C11—H11A117.3
C3—C4—C6122.2 (3)C10—C11—H11A117.3
C5—C4—C6121.7 (3)C10—C12—H12A109.5
N1—C5—C4125.1 (3)C10—C12—H12B109.5
N1—C5—H5A117.5H12A—C12—H12B109.5
C4—C5—H5A117.5C10—C12—H12C109.5
C4—C6—H6A109.5H12A—C12—H12C109.5
C4—C6—H6B109.5H12B—C12—H12C109.5
C5—N1—C1—C22.0 (4)C11—N3—C7—C80.2 (4)
C5—N1—C1—Cl1179.2 (2)C11—N3—C7—Cl2178.1 (2)
N1—C1—C2—C30.9 (4)N3—C7—C8—C91.7 (4)
Cl1—C1—C2—C3177.95 (19)Cl2—C7—C8—C9176.00 (19)
N1—C1—C2—N2179.7 (2)N3—C7—C8—N4178.3 (3)
Cl1—C1—C2—N22.7 (3)Cl2—C7—C8—N44.0 (4)
O1—N2—C2—C355.0 (4)O3—N4—C8—C934.7 (4)
O2—N2—C2—C3120.8 (3)O4—N4—C8—C9143.8 (3)
O1—N2—C2—C1125.7 (3)O3—N4—C8—C7145.3 (3)
O2—N2—C2—C158.5 (4)O4—N4—C8—C736.2 (4)
C1—C2—C3—C41.5 (4)C7—C8—C9—C101.5 (4)
N2—C2—C3—C4177.8 (2)N4—C8—C9—C10178.5 (2)
C2—C3—C4—C52.6 (4)C8—C9—C10—C110.6 (4)
C2—C3—C4—C6176.9 (2)C8—C9—C10—C12179.3 (2)
C1—N1—C5—C40.8 (4)C7—N3—C11—C102.5 (5)
C3—C4—C5—N11.6 (4)C9—C10—C11—N32.7 (5)
C6—C4—C5—N1177.9 (3)C12—C10—C11—N3177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.932.513.243 (4)136
Symmetry code: (i) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H5ClN2O2
Mr172.57
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)21.435 (6), 8.151 (2), 8.494 (2)
V3)1484.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.38 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7071, 2134, 1749
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.06
No. of reflections2134
No. of parameters201
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.13
Absolute structureFlack (1983), 139 Friedel pairs
Absolute structure parameter0.08 (8)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.932.513.243 (4)135.6
Symmetry code: (i) x+1, y+1, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409–413.  Web of Science CrossRef CAS Google Scholar
First citationLiégeois, F. F., Bruhwyler, J., Damas, J., Nguyen, T. P., Chleide, E. M., Mercier, M. G., Rogister, F. A. & Delarge, J. E. (1993). J. Med. Chem. 36, 2107–2114.  PubMed Google Scholar
First citationMadsen-Duggan, C. B., Debenham, J. S., Walsh, T. F., Yan, L., Huo, P., Wang, J., Tong, X., Lao, J., Fong, T. M., Xiao, J. C., Huang, C. R., Shen, C. P., Stribling, D. S., Shearman, L. P., Strack, A. M., Goulet, M. T. & Hale, J. J. (2010). Bioorg. Med. Chem. Lett. 20, 3750–3754.  CAS PubMed Google Scholar
First citationMeurer, L. C., Finke, P. E., Mills, S. G., Walsh, T. F., Toupence, R. B., Debenham, J. S., Goulet, M. T., Wang, J., Tong, X., Fong, T. M., Lao, J., Schaeffer, M. T., Chen, J., Shen, C. P., Sloan, S. D., Shearman, L. P., Strack, A. M. & Vander Ploeg, L. H. (2005). Bioorg. Med. Chem. Lett. 15, 645–651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNg, S. W. (2010). Acta Cryst. E66, o1020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds