organic compounds
2-Chloro-5-methyl-3-nitropyridine
aSchool of Chemistry and Pharmaceutical Engineering, Shandong Polytechnic University, Jinan 250353, People's Republic of China
*Correspondence e-mail: datong_zhang2006@yahoo.com.cn
The title compound, C6H5ClN2O2, crystallizes with two independent molecules in the Intermolecular C—H⋯O hydrogen bonds stabilize the crystal structure.
Related literature
For aplication of pyridines, see: Madsen-Duggan et al. (2010); Meurer et al. (2005); Liégeois et al. (1993); Kagabu et al. (2005). For related structures, see: Ng (2010). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681104400X/hg5113sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681104400X/hg5113Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681104400X/hg5113Isup3.cml
The title compound was synthesized by the reaction of 2-hydroxy-5-methyl-3-nitropyridine (0.01 mol) with thionyl chloride (15 ml) in the presence of a small amount of DMF at reflux (3 h). After evaporation, the reaction residue was diluted with water. The aqueous solution was extracted with dichloromethane, and the organic phase was dried and evaporated to afford the title product in 92% isolated yield. Crystals suitable for X-ray
were obtained by slow evaporation of a solution of the title compound in a hexane/methylene chloride mixture (1:1 v/v) at room temperature over a period of one week.All H atoms were found on difference maps, with C—H = 0.93–0.96 Å and included in the final cycles of
using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for the methyl H atoms.Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level. |
C6H5ClN2O2 | F(000) = 704 |
Mr = 172.57 | Dx = 1.545 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 1564 reflections |
a = 21.435 (6) Å | θ = 2.3–22.0° |
b = 8.151 (2) Å | µ = 0.46 mm−1 |
c = 8.494 (2) Å | T = 298 K |
V = 1484.0 (7) Å3 | Block, colorless |
Z = 8 | 0.38 × 0.24 × 0.21 mm |
Bruker SMART CCD area-detector diffractometer | 1749 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 25.0°, θmin = 1.9° |
ϕ and ω scans | h = −25→25 |
7071 measured reflections | k = −9→9 |
2134 independent reflections | l = −10→6 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0538P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2134 reflections | Δρmax = 0.20 e Å−3 |
201 parameters | Δρmin = −0.13 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 139 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.08 (8) |
C6H5ClN2O2 | V = 1484.0 (7) Å3 |
Mr = 172.57 | Z = 8 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 21.435 (6) Å | µ = 0.46 mm−1 |
b = 8.151 (2) Å | T = 298 K |
c = 8.494 (2) Å | 0.38 × 0.24 × 0.21 mm |
Bruker SMART CCD area-detector diffractometer | 1749 reflections with I > 2σ(I) |
7071 measured reflections | Rint = 0.023 |
2134 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.093 | Δρmax = 0.20 e Å−3 |
S = 1.06 | Δρmin = −0.13 e Å−3 |
2134 reflections | Absolute structure: Flack (1983), 139 Friedel pairs |
201 parameters | Absolute structure parameter: −0.08 (8) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.64412 (4) | 0.34108 (9) | 0.69639 (8) | 0.0705 (3) | |
Cl2 | 0.64313 (4) | 0.85811 (9) | 0.70504 (10) | 0.0812 (3) | |
O1 | 0.50283 (10) | 0.0831 (3) | 0.5349 (5) | 0.1076 (10) | |
O2 | 0.51384 (10) | 0.3414 (3) | 0.5424 (4) | 0.0821 (7) | |
O3 | 0.48112 (10) | 0.7214 (3) | 0.4606 (4) | 0.0982 (9) | |
O4 | 0.52431 (11) | 0.6869 (3) | 0.6857 (4) | 0.0952 (8) | |
N1 | 0.70207 (10) | 0.2297 (3) | 0.4520 (3) | 0.0583 (6) | |
N2 | 0.53214 (10) | 0.2046 (3) | 0.5159 (3) | 0.0572 (6) | |
N3 | 0.69533 (11) | 0.7387 (3) | 0.4591 (3) | 0.0640 (6) | |
N4 | 0.52614 (12) | 0.7020 (3) | 0.5437 (4) | 0.0652 (7) | |
C1 | 0.64679 (12) | 0.2463 (3) | 0.5147 (3) | 0.0462 (6) | |
C2 | 0.59406 (10) | 0.1857 (3) | 0.4440 (3) | 0.0404 (6) | |
C3 | 0.59813 (12) | 0.1067 (3) | 0.3021 (3) | 0.0443 (6) | |
H3B | 0.5626 | 0.0632 | 0.2549 | 0.053* | |
C4 | 0.65528 (11) | 0.0926 (3) | 0.2303 (3) | 0.0467 (7) | |
C5 | 0.70548 (13) | 0.1550 (3) | 0.3124 (4) | 0.0591 (7) | |
H5A | 0.7447 | 0.1443 | 0.2670 | 0.071* | |
C6 | 0.66285 (14) | 0.0156 (4) | 0.0719 (4) | 0.0673 (8) | |
H6A | 0.6313 | −0.0665 | 0.0572 | 0.101* | |
H6B | 0.7033 | −0.0343 | 0.0647 | 0.101* | |
H6C | 0.6588 | 0.0982 | −0.0081 | 0.101* | |
C7 | 0.64127 (13) | 0.7526 (3) | 0.5297 (3) | 0.0513 (7) | |
C8 | 0.58714 (12) | 0.6920 (3) | 0.4649 (3) | 0.0479 (7) | |
C9 | 0.58893 (12) | 0.6180 (3) | 0.3199 (3) | 0.0482 (7) | |
H9A | 0.5525 | 0.5788 | 0.2740 | 0.058* | |
C10 | 0.64506 (11) | 0.6021 (3) | 0.2429 (3) | 0.0500 (8) | |
C11 | 0.69626 (13) | 0.6619 (4) | 0.3200 (4) | 0.0634 (8) | |
H11A | 0.7349 | 0.6480 | 0.2717 | 0.076* | |
C12 | 0.65035 (14) | 0.5240 (4) | 0.0832 (4) | 0.0687 (8) | |
H12A | 0.6920 | 0.4835 | 0.0684 | 0.103* | |
H12B | 0.6411 | 0.6040 | 0.0035 | 0.103* | |
H12C | 0.6213 | 0.4347 | 0.0755 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0895 (6) | 0.0727 (5) | 0.0492 (5) | 0.0039 (4) | −0.0117 (4) | −0.0149 (5) |
Cl2 | 0.1138 (7) | 0.0757 (6) | 0.0542 (6) | 0.0059 (4) | −0.0185 (5) | −0.0151 (6) |
O1 | 0.0742 (14) | 0.0879 (17) | 0.161 (3) | −0.0239 (14) | 0.0468 (16) | 0.006 (2) |
O2 | 0.0775 (14) | 0.0813 (15) | 0.0875 (18) | 0.0228 (11) | 0.0239 (14) | −0.0082 (13) |
O3 | 0.0574 (14) | 0.118 (2) | 0.119 (3) | 0.0116 (14) | −0.0001 (14) | −0.0181 (17) |
O4 | 0.1076 (19) | 0.1013 (18) | 0.0766 (19) | 0.0100 (14) | 0.0405 (16) | −0.0110 (17) |
N1 | 0.0416 (12) | 0.0721 (15) | 0.0613 (17) | −0.0080 (11) | −0.0047 (12) | −0.0035 (13) |
N2 | 0.0503 (13) | 0.0667 (16) | 0.0547 (16) | 0.0012 (12) | 0.0115 (12) | 0.0037 (13) |
N3 | 0.0563 (14) | 0.0801 (16) | 0.0555 (16) | −0.0106 (12) | −0.0083 (14) | −0.0021 (14) |
N4 | 0.0648 (18) | 0.0604 (16) | 0.071 (2) | 0.0057 (13) | 0.0145 (16) | −0.0095 (15) |
C1 | 0.0549 (15) | 0.0421 (13) | 0.0415 (16) | 0.0006 (11) | −0.0035 (13) | 0.0015 (12) |
C2 | 0.0403 (13) | 0.0406 (13) | 0.0404 (16) | 0.0003 (10) | 0.0005 (11) | 0.0043 (11) |
C3 | 0.0434 (14) | 0.0413 (13) | 0.0483 (16) | −0.0016 (10) | −0.0047 (13) | 0.0013 (12) |
C4 | 0.0477 (14) | 0.0492 (13) | 0.0433 (19) | 0.0028 (11) | 0.0002 (13) | 0.0040 (12) |
C5 | 0.0425 (14) | 0.0787 (19) | 0.0563 (19) | 0.0001 (13) | 0.0060 (14) | 0.0006 (17) |
C6 | 0.0776 (18) | 0.074 (2) | 0.0503 (18) | 0.0075 (16) | 0.0082 (16) | −0.0046 (16) |
C7 | 0.0661 (17) | 0.0473 (15) | 0.0406 (16) | 0.0024 (12) | −0.0097 (14) | 0.0052 (12) |
C8 | 0.0515 (15) | 0.0444 (14) | 0.0479 (17) | 0.0034 (11) | 0.0037 (13) | 0.0076 (13) |
C9 | 0.0498 (15) | 0.0443 (13) | 0.0505 (18) | −0.0049 (11) | −0.0076 (13) | 0.0049 (13) |
C10 | 0.0553 (17) | 0.0498 (15) | 0.0449 (19) | −0.0011 (12) | 0.0034 (13) | 0.0076 (13) |
C11 | 0.0455 (15) | 0.084 (2) | 0.061 (2) | −0.0082 (14) | 0.0031 (15) | 0.0033 (18) |
C12 | 0.0832 (19) | 0.076 (2) | 0.0468 (18) | −0.0011 (17) | 0.0098 (16) | −0.0015 (16) |
Cl1—C1 | 1.727 (3) | C4—C5 | 1.380 (4) |
Cl2—C7 | 1.720 (3) | C4—C6 | 1.494 (4) |
O1—N2 | 1.184 (3) | C5—H5A | 0.9300 |
O2—N2 | 1.203 (3) | C6—H6A | 0.9600 |
O3—N4 | 1.206 (4) | C6—H6B | 0.9600 |
O4—N4 | 1.213 (4) | C6—H6C | 0.9600 |
N1—C1 | 1.306 (3) | C7—C8 | 1.376 (4) |
N1—C5 | 1.335 (4) | C8—C9 | 1.372 (4) |
N2—C2 | 1.469 (3) | C9—C10 | 1.376 (4) |
N3—C7 | 1.310 (4) | C9—H9A | 0.9300 |
N3—C11 | 1.338 (4) | C10—C11 | 1.368 (4) |
N4—C8 | 1.471 (4) | C10—C12 | 1.502 (4) |
C1—C2 | 1.372 (3) | C11—H11A | 0.9300 |
C2—C3 | 1.369 (4) | C12—H12A | 0.9600 |
C3—C4 | 1.373 (4) | C12—H12B | 0.9600 |
C3—H3B | 0.9300 | C12—H12C | 0.9600 |
C1—N1—C5 | 117.3 (2) | H6A—C6—H6B | 109.5 |
O1—N2—O2 | 125.2 (3) | C4—C6—H6C | 109.5 |
O1—N2—C2 | 116.6 (3) | H6A—C6—H6C | 109.5 |
O2—N2—C2 | 118.0 (2) | H6B—C6—H6C | 109.5 |
C7—N3—C11 | 117.3 (2) | N3—C7—C8 | 122.1 (3) |
O3—N4—O4 | 124.7 (3) | N3—C7—Cl2 | 114.8 (2) |
O3—N4—C8 | 116.9 (3) | C8—C7—Cl2 | 123.1 (2) |
O4—N4—C8 | 118.4 (3) | C9—C8—C7 | 119.6 (3) |
N1—C1—C2 | 122.1 (3) | C9—C8—N4 | 117.2 (3) |
N1—C1—Cl1 | 116.2 (2) | C7—C8—N4 | 123.2 (3) |
C2—C1—Cl1 | 121.7 (2) | C8—C9—C10 | 119.5 (3) |
C3—C2—C1 | 120.1 (2) | C8—C9—H9A | 120.2 |
C3—C2—N2 | 118.2 (2) | C10—C9—H9A | 120.2 |
C1—C2—N2 | 121.6 (2) | C11—C10—C9 | 116.1 (3) |
C2—C3—C4 | 119.2 (2) | C11—C10—C12 | 121.5 (3) |
C2—C3—H3B | 120.4 | C9—C10—C12 | 122.4 (3) |
C4—C3—H3B | 120.4 | N3—C11—C10 | 125.3 (3) |
C3—C4—C5 | 116.1 (3) | N3—C11—H11A | 117.3 |
C3—C4—C6 | 122.2 (3) | C10—C11—H11A | 117.3 |
C5—C4—C6 | 121.7 (3) | C10—C12—H12A | 109.5 |
N1—C5—C4 | 125.1 (3) | C10—C12—H12B | 109.5 |
N1—C5—H5A | 117.5 | H12A—C12—H12B | 109.5 |
C4—C5—H5A | 117.5 | C10—C12—H12C | 109.5 |
C4—C6—H6A | 109.5 | H12A—C12—H12C | 109.5 |
C4—C6—H6B | 109.5 | H12B—C12—H12C | 109.5 |
C5—N1—C1—C2 | 2.0 (4) | C11—N3—C7—C8 | −0.2 (4) |
C5—N1—C1—Cl1 | 179.2 (2) | C11—N3—C7—Cl2 | −178.1 (2) |
N1—C1—C2—C3 | −0.9 (4) | N3—C7—C8—C9 | −1.7 (4) |
Cl1—C1—C2—C3 | −177.95 (19) | Cl2—C7—C8—C9 | 176.00 (19) |
N1—C1—C2—N2 | 179.7 (2) | N3—C7—C8—N4 | 178.3 (3) |
Cl1—C1—C2—N2 | 2.7 (3) | Cl2—C7—C8—N4 | −4.0 (4) |
O1—N2—C2—C3 | 55.0 (4) | O3—N4—C8—C9 | −34.7 (4) |
O2—N2—C2—C3 | −120.8 (3) | O4—N4—C8—C9 | 143.8 (3) |
O1—N2—C2—C1 | −125.7 (3) | O3—N4—C8—C7 | 145.3 (3) |
O2—N2—C2—C1 | 58.5 (4) | O4—N4—C8—C7 | −36.2 (4) |
C1—C2—C3—C4 | −1.5 (4) | C7—C8—C9—C10 | 1.5 (4) |
N2—C2—C3—C4 | 177.8 (2) | N4—C8—C9—C10 | −178.5 (2) |
C2—C3—C4—C5 | 2.6 (4) | C8—C9—C10—C11 | 0.6 (4) |
C2—C3—C4—C6 | −176.9 (2) | C8—C9—C10—C12 | −179.3 (2) |
C1—N1—C5—C4 | −0.8 (4) | C7—N3—C11—C10 | 2.5 (5) |
C3—C4—C5—N1 | −1.6 (4) | C9—C10—C11—N3 | −2.7 (5) |
C6—C4—C5—N1 | 177.9 (3) | C12—C10—C11—N3 | 177.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O2i | 0.93 | 2.51 | 3.243 (4) | 136 |
Symmetry code: (i) −x+1, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H5ClN2O2 |
Mr | 172.57 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 298 |
a, b, c (Å) | 21.435 (6), 8.151 (2), 8.494 (2) |
V (Å3) | 1484.0 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.38 × 0.24 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7071, 2134, 1749 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.093, 1.06 |
No. of reflections | 2134 |
No. of parameters | 201 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.13 |
Absolute structure | Flack (1983), 139 Friedel pairs |
Absolute structure parameter | −0.08 (8) |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O2i | 0.93 | 2.51 | 3.243 (4) | 135.6 |
Symmetry code: (i) −x+1, −y+1, z−1/2. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409–413. Web of Science CrossRef CAS Google Scholar
Liégeois, F. F., Bruhwyler, J., Damas, J., Nguyen, T. P., Chleide, E. M., Mercier, M. G., Rogister, F. A. & Delarge, J. E. (1993). J. Med. Chem. 36, 2107–2114. PubMed Google Scholar
Madsen-Duggan, C. B., Debenham, J. S., Walsh, T. F., Yan, L., Huo, P., Wang, J., Tong, X., Lao, J., Fong, T. M., Xiao, J. C., Huang, C. R., Shen, C. P., Stribling, D. S., Shearman, L. P., Strack, A. M., Goulet, M. T. & Hale, J. J. (2010). Bioorg. Med. Chem. Lett. 20, 3750–3754. CAS PubMed Google Scholar
Meurer, L. C., Finke, P. E., Mills, S. G., Walsh, T. F., Toupence, R. B., Debenham, J. S., Goulet, M. T., Wang, J., Tong, X., Fong, T. M., Lao, J., Schaeffer, M. T., Chen, J., Shen, C. P., Sloan, S. D., Shearman, L. P., Strack, A. M. & Vander Ploeg, L. H. (2005). Bioorg. Med. Chem. Lett. 15, 645–651. Web of Science CrossRef PubMed CAS Google Scholar
Ng, S. W. (2010). Acta Cryst. E66, o1020. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted pyridines are often used as pharmacophores in medicinal chemistry (Madsen-Duggan et al., 2010; Meurer et al., 2005). 2-Chloro-5-methyl-3-nitropyridine (I) is important intermediate in the synthesis of some bioactive products (Liégeois, et al., 1993; Kagabu, et al., 2005). The title compound was prepared by the chlorination of 2-hydroxy-5-methyl-3-nitropyridine with thionyl chloride. We present here the crystal structure of (I).
The title compound, C6H5ClN2O2, crystallizes with two independent molecules in the asymmetric unit. All bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Ng, 2010). C—H···O intermolecular hydrogen bonds stabilize the crystal structure.(Table 1).