organic compounds
4-Nitrophenyl 4-bromobenzoate
aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia
*Correspondence e-mail: rodimo26@yahoo.es
In the 13H8BrNO4, molecules are linked into chains along [101] by weak C—H⋯O hydrogen bonds and Br⋯O contacts [3.140 (4) Å]. The planes of the nitrated and brominated aryl rings form a dihedral angle of 64.98 (10)°, indicating a twist in the molecule.
of the title compound, CRelated literature
For background to the applications of aromatic ). For molecular and supramolecular structures of nitroaryl compounds, see: Wardell et al. (2005); Jefford et al., (1986). For halogen bonding, see: Politzer et al. (2010); Ritter (2009). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond graph-set motifs, see: Etter (1990).
containing nitro groups, see: Jefford & Zaslona (1985Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811043923/hg5114sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811043923/hg5114Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811043923/hg5114Isup3.cml
Solution containing equimolar quantities (3.2 mmol) of 4-bromobenzoyl chloride and 4-nitrophenol in acetonitrile (60 ml) was gradually heated under reflux for 2 h. At room temperature, triethylamine was added, to get a solid which was poured in cold water. The solid was recrystallized in dichlorometane to yield excellent yellow crystals suitable for single-crystal X-ray diffraction. M.p. 431 (1) K.
The H-atoms were placed geometrically [C—H= 0.93 Å, Uiso(H) (1.2 times Ueq of the parent atom].
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).C13H8BrNO4 | F(000) = 640 |
Mr = 322.11 | Dx = 1.726 Mg m−3 |
Monoclinic, P21/c | Melting point: 431(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8177 (4) Å | Cell parameters from 5487 reflections |
b = 9.5279 (5) Å | θ = 2.9–27.1° |
c = 14.9394 (5) Å | µ = 3.33 mm−1 |
β = 99.024 (3)° | T = 293 K |
V = 1239.59 (10) Å3 | Block, pale-yellow |
Z = 4 | 0.55 × 0.31 × 0.23 mm |
Bruker–Nonius KappaCCD diffractometer | 2648 independent reflections |
Radiation source: fine-focus sealed tube | 1918 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.070 |
ω scans | θmax = 27.1°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→11 |
Tmin = 0.250, Tmax = 0.361 | k = −11→11 |
9341 measured reflections | l = −19→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0723P)2 + 0.6227P] where P = (Fo2 + 2Fc2)/3 |
2648 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.80 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
C13H8BrNO4 | V = 1239.59 (10) Å3 |
Mr = 322.11 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.8177 (4) Å | µ = 3.33 mm−1 |
b = 9.5279 (5) Å | T = 293 K |
c = 14.9394 (5) Å | 0.55 × 0.31 × 0.23 mm |
β = 99.024 (3)° |
Bruker–Nonius KappaCCD diffractometer | 2648 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1918 reflections with I > 2σ(I) |
Tmin = 0.250, Tmax = 0.361 | Rint = 0.070 |
9341 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.80 e Å−3 |
2648 reflections | Δρmin = −0.68 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 1.07826 (4) | 0.25892 (4) | 1.01950 (2) | 0.0659 (2) | |
O2 | 0.6701 (3) | 0.1952 (3) | 0.59586 (16) | 0.0569 (6) | |
C1 | 0.9755 (4) | 0.2726 (4) | 0.8984 (2) | 0.0507 (8) | |
O1 | 0.7563 (3) | 0.4159 (3) | 0.58276 (16) | 0.0606 (6) | |
C4 | 0.8266 (4) | 0.2946 (3) | 0.7227 (2) | 0.0457 (7) | |
C8 | 0.5953 (4) | 0.1968 (4) | 0.5064 (2) | 0.0480 (7) | |
C11 | 0.4518 (4) | 0.1846 (4) | 0.3321 (2) | 0.0504 (8) | |
C10 | 0.5615 (4) | 0.0861 (4) | 0.3623 (2) | 0.0552 (8) | |
H10 | 0.5859 | 0.0161 | 0.3235 | 0.066* | |
N1 | 0.3778 (5) | 0.1834 (4) | 0.2373 (2) | 0.0694 (9) | |
C7 | 0.7503 (4) | 0.3138 (4) | 0.6281 (2) | 0.0485 (7) | |
C5 | 0.9242 (4) | 0.4006 (4) | 0.7604 (3) | 0.0594 (9) | |
H5 | 0.9388 | 0.4796 | 0.7261 | 0.071* | |
C2 | 0.8757 (4) | 0.1668 (4) | 0.8629 (2) | 0.0527 (8) | |
H2 | 0.8587 | 0.0893 | 0.8978 | 0.063* | |
C3 | 0.8023 (4) | 0.1793 (3) | 0.7748 (2) | 0.0499 (8) | |
H3 | 0.7354 | 0.1090 | 0.7499 | 0.060* | |
C6 | 0.9997 (5) | 0.3897 (4) | 0.8482 (2) | 0.0631 (10) | |
H6 | 1.0659 | 0.4603 | 0.8732 | 0.076* | |
C9 | 0.6350 (4) | 0.0922 (3) | 0.4507 (2) | 0.0535 (8) | |
H9 | 0.7101 | 0.0268 | 0.4724 | 0.064* | |
C13 | 0.4817 (4) | 0.2937 (4) | 0.4769 (2) | 0.0554 (8) | |
H13 | 0.4546 | 0.3616 | 0.5162 | 0.066* | |
O3 | 0.4181 (5) | 0.0922 (4) | 0.18766 (19) | 0.0955 (11) | |
C12 | 0.4100 (5) | 0.2880 (4) | 0.3889 (3) | 0.0580 (9) | |
H12 | 0.3340 | 0.3527 | 0.3674 | 0.070* | |
O4 | 0.2819 (6) | 0.2721 (4) | 0.2116 (3) | 0.1064 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0611 (3) | 0.0868 (3) | 0.0476 (3) | −0.00760 (19) | 0.00100 (18) | −0.00065 (17) |
O2 | 0.0682 (16) | 0.0504 (12) | 0.0479 (13) | −0.0114 (12) | −0.0034 (11) | 0.0040 (11) |
C1 | 0.0421 (17) | 0.062 (2) | 0.0475 (18) | 0.0014 (14) | 0.0051 (14) | −0.0012 (14) |
O1 | 0.0684 (17) | 0.0519 (14) | 0.0599 (14) | −0.0047 (11) | 0.0054 (12) | 0.0080 (11) |
C4 | 0.0445 (17) | 0.0475 (16) | 0.0456 (17) | 0.0002 (14) | 0.0079 (14) | −0.0012 (14) |
C8 | 0.0480 (19) | 0.0511 (17) | 0.0434 (16) | −0.0075 (14) | 0.0029 (14) | 0.0044 (14) |
C11 | 0.059 (2) | 0.0515 (18) | 0.0408 (16) | −0.0151 (16) | 0.0091 (15) | 0.0008 (14) |
C10 | 0.067 (2) | 0.0478 (18) | 0.0534 (19) | −0.0115 (16) | 0.0189 (17) | −0.0075 (14) |
N1 | 0.094 (3) | 0.067 (2) | 0.0456 (17) | −0.030 (2) | 0.0054 (17) | 0.0047 (16) |
C7 | 0.0460 (18) | 0.0476 (18) | 0.0531 (19) | −0.0014 (14) | 0.0112 (15) | −0.0003 (15) |
C5 | 0.060 (2) | 0.058 (2) | 0.059 (2) | −0.0160 (17) | 0.0039 (16) | 0.0070 (16) |
C2 | 0.058 (2) | 0.0476 (18) | 0.0524 (18) | 0.0002 (15) | 0.0073 (16) | −0.0007 (14) |
C3 | 0.054 (2) | 0.0441 (17) | 0.0509 (18) | −0.0044 (14) | 0.0059 (15) | −0.0034 (14) |
C6 | 0.061 (2) | 0.067 (2) | 0.059 (2) | −0.0197 (18) | 0.0020 (18) | −0.0030 (17) |
C9 | 0.057 (2) | 0.0445 (17) | 0.059 (2) | −0.0004 (15) | 0.0105 (16) | 0.0020 (14) |
C13 | 0.056 (2) | 0.0594 (19) | 0.050 (2) | 0.0043 (17) | 0.0057 (16) | −0.0083 (16) |
O3 | 0.148 (3) | 0.092 (2) | 0.0467 (15) | −0.027 (2) | 0.0140 (18) | −0.0131 (15) |
C12 | 0.057 (2) | 0.062 (2) | 0.053 (2) | 0.0049 (17) | 0.0034 (17) | 0.0015 (16) |
O4 | 0.137 (4) | 0.105 (3) | 0.063 (2) | 0.011 (2) | −0.028 (2) | 0.0082 (17) |
Br—C1 | 1.896 (4) | C10—C9 | 1.379 (5) |
O2—C7 | 1.379 (4) | C10—H10 | 0.9300 |
O2—C8 | 1.394 (4) | N1—O4 | 1.214 (5) |
C1—C6 | 1.380 (5) | N1—O3 | 1.230 (5) |
C1—C2 | 1.387 (5) | C5—C6 | 1.379 (5) |
O1—C7 | 1.192 (4) | C5—H5 | 0.9300 |
C4—C3 | 1.383 (5) | C2—C3 | 1.378 (5) |
C4—C5 | 1.388 (5) | C2—H2 | 0.9300 |
C4—C7 | 1.477 (5) | C3—H3 | 0.9300 |
C8—C9 | 1.378 (5) | C6—H6 | 0.9300 |
C8—C13 | 1.383 (5) | C9—H9 | 0.9300 |
C11—C10 | 1.372 (5) | C13—C12 | 1.367 (5) |
C11—C12 | 1.387 (5) | C13—H13 | 0.9300 |
C11—N1 | 1.465 (4) | C12—H12 | 0.9300 |
C7—O2—C8 | 117.8 (3) | C6—C5—C4 | 120.5 (3) |
C6—C1—C2 | 121.5 (3) | C6—C5—H5 | 119.8 |
C6—C1—Br | 118.9 (3) | C4—C5—H5 | 119.8 |
C2—C1—Br | 119.6 (3) | C3—C2—C1 | 118.5 (3) |
C3—C4—C5 | 119.4 (3) | C3—C2—H2 | 120.7 |
C3—C4—C7 | 123.3 (3) | C1—C2—H2 | 120.7 |
C5—C4—C7 | 117.3 (3) | C2—C3—C4 | 121.0 (3) |
C9—C8—C13 | 122.0 (3) | C2—C3—H3 | 119.5 |
C9—C8—O2 | 116.4 (3) | C4—C3—H3 | 119.5 |
C13—C8—O2 | 121.5 (3) | C5—C6—C1 | 119.0 (3) |
C10—C11—C12 | 121.8 (3) | C5—C6—H6 | 120.5 |
C10—C11—N1 | 119.8 (3) | C1—C6—H6 | 120.5 |
C12—C11—N1 | 118.4 (4) | C8—C9—C10 | 118.9 (3) |
C11—C10—C9 | 119.1 (3) | C8—C9—H9 | 120.5 |
C11—C10—H10 | 120.4 | C10—C9—H9 | 120.5 |
C9—C10—H10 | 120.4 | C12—C13—C8 | 118.9 (3) |
O4—N1—O3 | 123.6 (4) | C12—C13—H13 | 120.5 |
O4—N1—C11 | 118.9 (4) | C8—C13—H13 | 120.5 |
O3—N1—C11 | 117.5 (4) | C13—C12—C11 | 119.2 (4) |
O1—C7—O2 | 122.4 (3) | C13—C12—H12 | 120.4 |
O1—C7—C4 | 126.2 (3) | C11—C12—H12 | 120.4 |
O2—C7—C4 | 111.4 (3) | ||
C7—O2—C8—C9 | 123.0 (3) | C6—C1—C2—C3 | 1.3 (5) |
C7—O2—C8—C13 | −60.4 (4) | Br—C1—C2—C3 | 179.9 (3) |
C12—C11—C10—C9 | −1.7 (5) | C1—C2—C3—C4 | −0.3 (5) |
N1—C11—C10—C9 | 177.2 (3) | C5—C4—C3—C2 | −1.2 (5) |
C10—C11—N1—O4 | −179.4 (4) | C7—C4—C3—C2 | −179.6 (3) |
C12—C11—N1—O4 | −0.4 (6) | C4—C5—C6—C1 | −0.7 (6) |
C10—C11—N1—O3 | 0.0 (5) | C2—C1—C6—C5 | −0.9 (6) |
C12—C11—N1—O3 | 178.9 (4) | Br—C1—C6—C5 | −179.5 (3) |
C8—O2—C7—O1 | 0.6 (5) | C13—C8—C9—C10 | 1.5 (5) |
C8—O2—C7—C4 | −178.4 (3) | O2—C8—C9—C10 | 178.1 (3) |
C3—C4—C7—O1 | 173.0 (4) | C11—C10—C9—C8 | 0.4 (5) |
C5—C4—C7—O1 | −5.4 (5) | C9—C8—C13—C12 | −2.0 (6) |
C3—C4—C7—O2 | −8.0 (5) | O2—C8—C13—C12 | −178.5 (3) |
C5—C4—C7—O2 | 173.5 (3) | C8—C13—C12—C11 | 0.7 (6) |
C3—C4—C5—C6 | 1.7 (6) | C10—C11—C12—C13 | 1.2 (6) |
C7—C4—C5—C6 | −179.8 (4) | N1—C11—C12—C13 | −177.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O4i | 0.93 | 2.69 | 3.543 (6) | 153 |
C3—H3···O3ii | 0.93 | 2.60 | 3.335 (5) | 136 |
C13—H13···O3iii | 0.93 | 2.67 | 3.460 (5) | 143 |
C12—H12···O1iv | 0.93 | 2.50 | 3.237 (5) | 137 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H8BrNO4 |
Mr | 322.11 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.8177 (4), 9.5279 (5), 14.9394 (5) |
β (°) | 99.024 (3) |
V (Å3) | 1239.59 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.33 |
Crystal size (mm) | 0.55 × 0.31 × 0.23 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.250, 0.361 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9341, 2648, 1918 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.641 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.137, 1.02 |
No. of reflections | 2648 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.80, −0.68 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O4i | 0.93 | 2.69 | 3.543 (6) | 153.0 |
C3—H3···O3ii | 0.93 | 2.60 | 3.335 (5) | 136.1 |
C13—H13···O3iii | 0.93 | 2.67 | 3.460 (5) | 143.4 |
C12—H12···O1iv | 0.93 | 2.50 | 3.237 (5) | 136.8 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
Thanks are given to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Crystallographic Database (CSD; Allen, 2002). The author also thanks the Universidad del Valle, Colombia, for partial financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jefford, C. W., Kubota, T. & Zaslona, A. (1986). Helv. Chim. Acta, 69, 2048–2061. CrossRef CAS Web of Science Google Scholar
Jefford, C. W. & Zaslona, A. (1985). Tetrahedron Lett. 26, 6035–6038. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Politzer, P., Murray, J. S. & Clark, T. (2010). Phys. Chem. Chem. Phys. 12, 7748–7757. Web of Science CrossRef CAS PubMed Google Scholar
Ritter, S. K. (2009). Sci. Technol. 87, 39–42. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3334–o3336. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aromatic esters containing nitro groups in their aromatic rings can be used as precursors for the preparation of compounds with potential analgesic and anti-inflammatory properties (Jefford & Zaslona, 1985). Molecular and supramolecular structures of a wide range of nitroaryl compounds have been reported (Wardell et al., 2005 and Jefford et al., 1986).
In order to complement the structural information on nitroaryl compounds the title ester, 4-nitrophenyl bromobenzoate (I) was synthesized. A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The central ester fragment between atoms C4 and C8 is effectively planar. The nitrated and brominated aryl rings form a dihedral angle of 64.98 (10)°, indicating a twist in the molecule. The nitro group forms a dihedral angle of 2.7 (5)° with the adjacent aryl ring. Halogen bonding, an electrostatically driven higly directional noncovalent interaction, that can be important for its potential in the development of new materials and pharmaceutical compounds (Politzer et al., 2010 and Ritter, 2009) can be observed in the present structure. Indeed, the Br···O contacts along [101] with a Br1···O3iii, (iii: x - 1,+y,+z + 1) distance of 3.140 (4) Å, showing the formation of an infinite chain is detected (see Fig. 2). Other C—H···O weak hydrogen bonds (see Table 1, Nardelli, 1995) that complement the crystal packing can also be seen in this figure. The propagation of these interactions forms R33(30), R44(24) and R22(14) rings (Etter, 1990) along this direction.