organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­­oxy)-5-nitro­pyridine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 October 2011; accepted 24 October 2011; online 29 October 2011)

The title mol­ecule, C12H10N2O3, is twisted, the dihedral angle between the rings being 61.16 (13)°. The nitro group is approximately coplanar with the pyridine ring to which it is attached [O—N—C—C torsion angle = −178.1 (3)°]. Supra­molecular chains along [010] and mediated by C—H⋯O and ππ [centroid(pyrid­yl)–(benzene) distance = 3.8259 (18) Å] contacts feature in the crystal packing.

Related literature

For the structure of a related nitro-pyridine derivative, see: Nasir et al. (2010[Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2428.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O3

  • Mr = 230.22

  • Orthorhombic, P b c a

  • a = 7.2818 (18) Å

  • b = 11.977 (2) Å

  • c = 25.362 (5) Å

  • V = 2211.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.670, Tmax = 0.746

  • 15887 measured reflections

  • 1951 independent reflections

  • 1089 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.147

  • S = 1.02

  • 1951 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O(3)i 0.93 2.43 3.135 (3) 132
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis and crystal structure determination of the title compound, (I), was determined in connection with studies of related species (Nasir et al., 2010). In (I), the dihedral angle formed between the pyridyl and benzene rings is 61.16 (13)°, indicating significant twisting in the molecule. The nitro group is co-planar with the pyridyl ring to which it is connected as seen in the value of the O2—N2—C4—C3 torsion angle of -178.1 (3)°.

The most prominent features in the crystal packing are the formation of C—H···O, Table 1, and ππ interactions. The latter occur between the pyridyl and benzene rings with the separation between the ring centroids being 3.8259 (18) Å for symmetry operation 3/2 - x, 1/2 + y, z. These interactions lead to supramolecular chains along the b axis, Fig. 2, which pack as shown in Fig. 3.

Related literature top

For the structure of a related nitro-pyridine derivative, see: Nasir et al. (2010).

Experimental top

p-Cresol (2.16 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) were dissolved in water (50 ml) and to the solution was added 2-chloro-5-nitropyridine (3.17 g, 20 mmol) dissolved in THF (50 ml). The mixture was heated for 5 h. Water was added and the organic phase extracted with chloroform. The chloroform solution was dried over sodium sulfate; slow evaporation led to the formation of colourless crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.93–0.96 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Supramolecular chain along [010] in (I) sustained by C—H···O and ππ interactions, shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. Unit-cell contents for (I) shown in projection down the b axis highlighting the packing of supramolecular chains.
2-(4-Methylphenoxy)-5-nitropyridine top
Crystal data top
C12H10N2O3F(000) = 960
Mr = 230.22Dx = 1.383 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1038 reflections
a = 7.2818 (18) Åθ = 3.2–19.7°
b = 11.977 (2) ŵ = 0.10 mm1
c = 25.362 (5) ÅT = 293 K
V = 2211.9 (8) Å3Block, colourless
Z = 80.20 × 0.18 × 0.07 mm
Data collection top
Bruker SMART APEX
diffractometer
1951 independent reflections
Radiation source: fine-focus sealed tube1089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.670, Tmax = 0.746k = 1414
15887 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.2807P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1951 reflectionsΔρmax = 0.15 e Å3
156 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (13)
Crystal data top
C12H10N2O3V = 2211.9 (8) Å3
Mr = 230.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2818 (18) ŵ = 0.10 mm1
b = 11.977 (2) ÅT = 293 K
c = 25.362 (5) Å0.20 × 0.18 × 0.07 mm
Data collection top
Bruker SMART APEX
diffractometer
1951 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1089 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.746Rint = 0.074
15887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
1951 reflectionsΔρmin = 0.13 e Å3
156 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5542 (3)0.41426 (14)0.32750 (7)0.0725 (6)
O20.8217 (3)0.59307 (19)0.54024 (9)0.1039 (8)
O30.7135 (4)0.74378 (19)0.50863 (8)0.1135 (9)
N10.6779 (3)0.41528 (17)0.41124 (9)0.0699 (7)
N20.7486 (4)0.6456 (2)0.50490 (10)0.0758 (7)
C10.6005 (4)0.4707 (2)0.37191 (11)0.0595 (7)
C20.5682 (3)0.5841 (2)0.37215 (10)0.0613 (7)
H20.51450.61910.34330.074*
C30.6168 (4)0.6439 (2)0.41563 (10)0.0648 (7)
H30.59780.72060.41730.078*
C40.6950 (4)0.5868 (2)0.45701 (10)0.0576 (7)
C50.7247 (4)0.4751 (2)0.45359 (11)0.0675 (8)
H50.77980.43890.48190.081*
C60.5381 (4)0.2976 (2)0.32825 (10)0.0588 (7)
C70.6205 (4)0.2394 (2)0.28825 (9)0.0625 (7)
H70.69430.27590.26380.075*
C80.5920 (4)0.1252 (2)0.28494 (10)0.0639 (7)
H80.64590.08570.25740.077*
C90.4864 (4)0.0685 (2)0.32118 (10)0.0601 (7)
C100.4088 (4)0.1301 (2)0.36136 (11)0.0675 (8)
H100.33930.09360.38680.081*
C110.4313 (4)0.2442 (2)0.36485 (10)0.0685 (8)
H110.37470.28440.39170.082*
C120.4559 (4)0.0556 (2)0.31771 (12)0.0854 (9)
H12A0.47650.08880.35170.128*
H12B0.53970.08710.29260.128*
H12C0.33200.07000.30670.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0976 (16)0.0589 (12)0.0612 (11)0.0000 (10)0.0111 (11)0.0016 (9)
O20.142 (2)0.0885 (16)0.0806 (14)0.0159 (14)0.0259 (15)0.0119 (13)
O30.210 (3)0.0523 (12)0.0784 (14)0.0020 (15)0.0069 (16)0.0057 (11)
N10.0881 (17)0.0516 (13)0.0699 (14)0.0073 (11)0.0110 (14)0.0033 (12)
N20.104 (2)0.0597 (16)0.0639 (15)0.0023 (14)0.0124 (14)0.0004 (13)
C10.0622 (17)0.0557 (16)0.0607 (16)0.0015 (13)0.0020 (14)0.0036 (14)
C20.0640 (18)0.0586 (17)0.0615 (16)0.0076 (13)0.0040 (14)0.0104 (14)
C30.0754 (19)0.0496 (15)0.0695 (17)0.0059 (14)0.0120 (16)0.0042 (14)
C40.0645 (17)0.0508 (16)0.0574 (15)0.0002 (13)0.0085 (14)0.0002 (13)
C50.081 (2)0.0566 (17)0.0650 (17)0.0056 (15)0.0076 (15)0.0019 (14)
C60.0642 (18)0.0568 (17)0.0555 (16)0.0006 (13)0.0087 (14)0.0002 (13)
C70.0632 (17)0.0729 (18)0.0513 (15)0.0010 (14)0.0007 (13)0.0029 (14)
C80.0646 (17)0.0730 (19)0.0541 (15)0.0055 (15)0.0050 (14)0.0100 (14)
C90.0536 (16)0.0654 (18)0.0614 (16)0.0024 (14)0.0105 (14)0.0089 (14)
C100.0596 (17)0.075 (2)0.0683 (18)0.0082 (14)0.0032 (15)0.0007 (15)
C110.0697 (19)0.0705 (19)0.0651 (17)0.0041 (15)0.0042 (15)0.0086 (15)
C120.088 (2)0.071 (2)0.098 (2)0.0109 (16)0.0140 (19)0.0137 (17)
Geometric parameters (Å, º) top
O1—C11.356 (3)C6—C111.369 (3)
O1—C61.403 (3)C6—C71.369 (3)
O2—N21.217 (3)C7—C81.386 (4)
O3—N21.208 (3)C7—H70.9300
N1—C11.324 (3)C8—C91.377 (3)
N1—C51.336 (3)C8—H80.9300
N2—C41.457 (3)C9—C101.379 (3)
C1—C21.379 (3)C9—C121.505 (3)
C2—C31.361 (3)C10—C111.380 (3)
C2—H20.9300C10—H100.9300
C3—C41.376 (3)C11—H110.9300
C3—H30.9300C12—H12A0.9600
C4—C51.358 (3)C12—H12B0.9600
C5—H50.9300C12—H12C0.9600
C1—O1—C6120.4 (2)C7—C6—O1117.4 (2)
C1—N1—C5116.4 (2)C6—C7—C8118.8 (3)
O3—N2—O2122.5 (3)C6—C7—H7120.6
O3—N2—C4118.6 (3)C8—C7—H7120.6
O2—N2—C4118.8 (2)C9—C8—C7122.0 (2)
N1—C1—O1118.8 (2)C9—C8—H8119.0
N1—C1—C2124.3 (3)C7—C8—H8119.0
O1—C1—C2116.9 (2)C8—C9—C10117.3 (2)
C3—C2—C1118.5 (2)C8—C9—C12122.0 (2)
C3—C2—H2120.7C10—C9—C12120.7 (3)
C1—C2—H2120.7C9—C10—C11121.9 (3)
C2—C3—C4117.7 (2)C9—C10—H10119.0
C2—C3—H3121.2C11—C10—H10119.0
C4—C3—H3121.2C6—C11—C10119.1 (3)
C5—C4—C3120.4 (3)C6—C11—H11120.4
C5—C4—N2119.1 (3)C10—C11—H11120.4
C3—C4—N2120.5 (2)C9—C12—H12A109.5
N1—C5—C4122.7 (3)C9—C12—H12B109.5
N1—C5—H5118.7H12A—C12—H12B109.5
C4—C5—H5118.7C9—C12—H12C109.5
C11—C6—C7120.9 (2)H12A—C12—H12C109.5
C11—C6—O1121.5 (2)H12B—C12—H12C109.5
C5—N1—C1—O1178.5 (2)C3—C4—C5—N11.2 (4)
C5—N1—C1—C20.7 (4)N2—C4—C5—N1179.4 (2)
C6—O1—C1—N118.3 (4)C1—O1—C6—C1152.0 (3)
C6—O1—C1—C2163.8 (2)C1—O1—C6—C7133.5 (2)
N1—C1—C2—C30.7 (4)C11—C6—C7—C80.9 (4)
O1—C1—C2—C3178.6 (2)O1—C6—C7—C8173.7 (2)
C1—C2—C3—C40.2 (4)C6—C7—C8—C91.2 (4)
C2—C3—C4—C51.1 (4)C7—C8—C9—C100.0 (4)
C2—C3—C4—N2179.4 (2)C7—C8—C9—C12179.8 (2)
O3—N2—C4—C5176.4 (3)C8—C9—C10—C111.6 (4)
O2—N2—C4—C51.3 (4)C12—C9—C10—C11178.6 (3)
O3—N2—C4—C34.1 (4)C7—C6—C11—C100.7 (4)
O2—N2—C4—C3178.1 (3)O1—C6—C11—C10175.0 (2)
C1—N1—C5—C40.2 (4)C9—C10—C11—C61.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O(3)i0.932.433.135 (3)132
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O3
Mr230.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.2818 (18), 11.977 (2), 25.362 (5)
V3)2211.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.670, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15887, 1951, 1089
Rint0.074
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.147, 1.02
No. of reflections1951
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O(3)i0.932.433.135 (3)132
Symmetry code: (i) x+3/2, y1/2, z.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

We thank the University of Malaya (grant No. RG027/ 09AFR) for supporting this study.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds