organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-(3-methyl­phen­yl)pyridin-2-amine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 October 2011; accepted 24 October 2011; online 29 October 2011)

The title amine, C13H14N2, is twisted with a dihedral angle between the rings of 60.07 (9)°. The amine N—H group and pyridine N atom are syn allowing for the formation of centrosymmetric eight-membered {⋯HNCN}2 synthons via N—H⋯N hydrogen bonds. The two-mol­ecule aggregates are sustained in the three-dimensional crystal packing via C—H⋯π and ππ inter­actions [centroid–centroid distance for pyridyl rings = 3.7535 (12) Å]

Related literature

For a copper(II) paddle-wheel complex containing the title mol­ecule as a ligand, see: Fairuz et al. (2010[Fairuz, Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2010). Acta Cryst. E66, m165.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2

  • Mr = 198.26

  • Triclinic, [P \overline 1]

  • a = 7.1802 (9) Å

  • b = 7.6509 (10) Å

  • c = 10.8120 (14) Å

  • α = 106.957 (2)°

  • β = 91.859 (2)°

  • γ = 95.720 (2)°

  • V = 564.12 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.993

  • 7262 measured reflections

  • 2581 independent reflections

  • 1694 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.168

  • S = 1.02

  • 2581 reflections

  • 142 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are centroids of the N2,C1–C5 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N2i 0.87 (1) 2.12 (1) 2.978 (2) 172 (2)
C6—H6b⋯Cg1ii 0.96 2.73 3.624 (3) 155
C13—H13b⋯Cg2iii 0.96 2.74 3.612 (2) 151
C13—H13c⋯Cg2iv 0.96 2.88 3.642 (2) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+2, -z+1; (iii) -x+2, -y+2, -z+2; (iv) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title amine, (I), has been observed to coordinate CuII in a paddle-wheel motif (Fairuz et al., 2010). Herein, the crystal and molecular structure of the amine is described.

The dihedral angle between the pyridyl and benzene rings in (I), Fig. 1, is 60.07 (9)°, indicating a twisted conformation. The amine-NH and pyridyl-N atoms are syn. This latter feature allows for the formation of centrosymmetric eight-membered {···HNCN}2 synthons via N—H···N hydrogen bonds, Fig. 2 and Table 1. The two-molecule aggregates are connected into a layer in the ab plane via C—H···π(pyridyl) interactions, Table 1, and ππ interactions occurring between pyridyl rings [3.7535 (12) Å for symmetry operation 2 - x, 1 - y, 1 - z], Fig. 3. The benzene rings project out of the layers allowing for their inter-digitation along the c axis via C—H···π interactions, Fig. 4 and Table 1.

Related literature top

For a copper(II) paddle-wheel complex containing the title molecule as a ligand, see: Fairuz et al. (2010).

Experimental top

2-Chloro-4-methylpyridine (1.0 ml, 1.14 mmol) and m-toluidine (1.24 ml, 1.14 mmol) were refluxed for 4 h. The suspension was cooled, taken up in water (15 ml) and then extracted with diethyl ether (3 x 10 ml). The organic layer was washed with water (3 x 10 ml) and dried over anhydrous sodium sulfate. Evaporation of diethyl ether gave a dark-brown solid and recrystallization from its ethanol solution gave pure colourless crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5Ueq(C). The N-bound H-atom was located in a difference Fourier map and was refined with N—H = 0.86±0.01 Å, and with unconstrained Uiso.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Two molecule aggregates in (I) mediated by N—H···N hydrogen bonding, shown as blue dashed lines.
[Figure 3] Fig. 3. Layers in the ab plane in (I) sustained by N—H···N hydrogen bonding, C—H···π(pyridyl) and ππ interactions shown as blue, orange and purple dashed lines, respectively.
[Figure 4] Fig. 4. Unit-cell contents for (I) shown in projection down the b axis highlighting the inter-digitation of layers. The N—H···N hydrogen bonding, C—H···π(pyridyl) and ππ interactions are shown as blue, orange and purple dashed lines, respectively.
4-Methyl-N-(3-methylphenyl)pyridin-2-amine top
Crystal data top
C13H14N2Z = 2
Mr = 198.26F(000) = 212
Triclinic, P1Dx = 1.167 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1802 (9) ÅCell parameters from 1537 reflections
b = 7.6509 (10) Åθ = 2.8–24.2°
c = 10.8120 (14) ŵ = 0.07 mm1
α = 106.957 (2)°T = 293 K
β = 91.859 (2)°Prism, colourless
γ = 95.720 (2)°0.20 × 0.18 × 0.10 mm
V = 564.12 (13) Å3
Data collection top
Bruker SMART APEX
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube1694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.986, Tmax = 0.993k = 99
7262 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.1088P]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C13H14N2γ = 95.720 (2)°
Mr = 198.26V = 564.12 (13) Å3
Triclinic, P1Z = 2
a = 7.1802 (9) ÅMo Kα radiation
b = 7.6509 (10) ŵ = 0.07 mm1
c = 10.8120 (14) ÅT = 293 K
α = 106.957 (2)°0.20 × 0.18 × 0.10 mm
β = 91.859 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1694 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.993Rint = 0.029
7262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
2581 reflectionsΔρmin = 0.19 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6599 (2)0.6400 (2)0.64600 (14)0.0512 (4)
H1n0.561 (2)0.563 (2)0.6173 (18)0.061 (6)*
N20.7026 (2)0.6004 (2)0.43224 (13)0.0445 (4)
C10.7759 (2)0.6687 (2)0.55430 (15)0.0384 (4)
C20.9589 (2)0.7569 (2)0.58388 (16)0.0424 (4)
H21.00560.80300.66980.051*
C31.0702 (3)0.7759 (2)0.48638 (18)0.0452 (4)
C40.9924 (3)0.7063 (3)0.35997 (18)0.0537 (5)
H41.06130.71820.29090.064*
C50.8129 (3)0.6199 (3)0.33856 (17)0.0530 (5)
H50.76430.57160.25320.064*
C61.2683 (3)0.8666 (3)0.5154 (2)0.0616 (6)
H6A1.32220.84060.58970.092*
H6B1.26910.99720.53310.092*
H6C1.34050.82020.44220.092*
C70.6915 (2)0.7151 (2)0.78132 (15)0.0408 (4)
C80.6745 (3)0.6003 (3)0.85864 (17)0.0483 (5)
H80.64910.47390.82100.058*
C90.6951 (3)0.6721 (3)0.99134 (19)0.0592 (5)
H90.68290.59411.04310.071*
C100.7336 (3)0.8593 (3)1.04803 (18)0.0580 (5)
H100.74900.90631.13780.070*
C110.7494 (2)0.9777 (3)0.97289 (18)0.0488 (5)
C120.7282 (2)0.9038 (2)0.83984 (17)0.0460 (4)
H120.73860.98210.78810.055*
C130.7845 (3)1.1821 (3)1.0352 (2)0.0708 (7)
H13A0.78041.24360.96960.106*
H13B0.90561.21251.08110.106*
H13C0.68971.22071.09470.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0469 (9)0.0642 (10)0.0337 (8)0.0178 (8)0.0010 (7)0.0089 (7)
N20.0478 (9)0.0479 (8)0.0344 (8)0.0035 (6)0.0010 (6)0.0105 (6)
C10.0425 (9)0.0371 (8)0.0336 (9)0.0011 (7)0.0002 (7)0.0094 (6)
C20.0412 (10)0.0439 (9)0.0389 (9)0.0001 (7)0.0010 (7)0.0094 (7)
C30.0429 (10)0.0388 (8)0.0555 (11)0.0066 (7)0.0092 (8)0.0151 (8)
C40.0577 (12)0.0583 (11)0.0470 (11)0.0047 (9)0.0167 (9)0.0178 (9)
C50.0619 (13)0.0587 (11)0.0353 (9)0.0010 (9)0.0038 (9)0.0109 (8)
C60.0429 (11)0.0623 (12)0.0786 (15)0.0001 (9)0.0112 (10)0.0204 (11)
C70.0333 (9)0.0509 (10)0.0349 (9)0.0009 (7)0.0007 (7)0.0094 (7)
C80.0512 (11)0.0478 (10)0.0446 (10)0.0004 (8)0.0034 (8)0.0135 (8)
C90.0670 (14)0.0693 (13)0.0443 (11)0.0016 (10)0.0031 (9)0.0237 (10)
C100.0566 (12)0.0755 (14)0.0339 (9)0.0037 (10)0.0018 (8)0.0050 (9)
C110.0356 (9)0.0530 (10)0.0483 (11)0.0067 (8)0.0004 (8)0.0001 (8)
C120.0434 (10)0.0478 (10)0.0466 (10)0.0020 (7)0.0014 (8)0.0153 (8)
C130.0576 (13)0.0582 (12)0.0774 (15)0.0090 (10)0.0050 (11)0.0096 (11)
Geometric parameters (Å, º) top
N1—C11.367 (2)C6—H6C0.9600
N1—C71.409 (2)C7—C81.378 (2)
N1—H1n0.865 (10)C7—C121.391 (2)
N2—C11.338 (2)C8—C91.376 (3)
N2—C51.339 (2)C8—H80.9300
C1—C21.398 (2)C9—C101.378 (3)
C2—C31.375 (2)C9—H90.9300
C2—H20.9300C10—C111.382 (3)
C3—C41.389 (3)C10—H100.9300
C3—C61.500 (3)C11—C121.381 (2)
C4—C51.368 (3)C11—C131.503 (3)
C4—H40.9300C12—H120.9300
C5—H50.9300C13—H13A0.9600
C6—H6A0.9600C13—H13B0.9600
C6—H6B0.9600C13—H13C0.9600
C1—N1—C7126.61 (15)C8—C7—C12118.87 (16)
C1—N1—H1n115.9 (14)C8—C7—N1119.37 (16)
C7—N1—H1n117.4 (14)C12—C7—N1121.64 (16)
C1—N2—C5116.93 (15)C7—C8—C9120.19 (17)
N2—C1—N1114.66 (15)C7—C8—H8119.9
N2—C1—C2122.02 (15)C9—C8—H8119.9
N1—C1—C2123.28 (15)C8—C9—C10120.34 (19)
C3—C2—C1120.26 (16)C8—C9—H9119.8
C3—C2—H2119.9C10—C9—H9119.8
C1—C2—H2119.9C9—C10—C11120.69 (18)
C2—C3—C4117.35 (17)C9—C10—H10119.7
C2—C3—C6121.26 (18)C11—C10—H10119.7
C4—C3—C6121.38 (17)C12—C11—C10118.37 (17)
C5—C4—C3119.02 (17)C12—C11—C13121.09 (19)
C5—C4—H4120.5C10—C11—C13120.52 (18)
C3—C4—H4120.5C11—C12—C7121.52 (17)
N2—C5—C4124.40 (17)C11—C12—H12119.2
N2—C5—H5117.8C7—C12—H12119.2
C4—C5—H5117.8C11—C13—H13A109.5
C3—C6—H6A109.5C11—C13—H13B109.5
C3—C6—H6B109.5H13A—C13—H13B109.5
H6A—C6—H6B109.5C11—C13—H13C109.5
C3—C6—H6C109.5H13A—C13—H13C109.5
H6A—C6—H6C109.5H13B—C13—H13C109.5
H6B—C6—H6C109.5
C5—N2—C1—N1177.95 (16)C1—N1—C7—C8129.1 (2)
C5—N2—C1—C20.1 (2)C1—N1—C7—C1254.9 (3)
C7—N1—C1—N2171.86 (17)C12—C7—C8—C90.5 (3)
C7—N1—C1—C210.1 (3)N1—C7—C8—C9176.57 (17)
N2—C1—C2—C30.0 (3)C7—C8—C9—C100.3 (3)
N1—C1—C2—C3177.81 (16)C8—C9—C10—C110.9 (3)
C1—C2—C3—C40.7 (3)C9—C10—C11—C120.8 (3)
C1—C2—C3—C6178.78 (16)C9—C10—C11—C13177.77 (19)
C2—C3—C4—C51.4 (3)C10—C11—C12—C70.0 (3)
C6—C3—C4—C5178.08 (18)C13—C11—C12—C7178.52 (17)
C1—N2—C5—C40.9 (3)C8—C7—C12—C110.6 (3)
C3—C4—C5—N21.6 (3)N1—C7—C12—C11176.60 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are centroids of the N2,C1–C5 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N2i0.87 (1)2.12 (1)2.978 (2)172 (2)
C6—H6b···Cg1ii0.962.733.624 (3)155
C13—H13b···Cg2iii0.962.743.612 (2)151
C13—H13c···Cg2iv0.962.883.642 (2)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1; (iii) x+2, y+2, z+2; (iv) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC13H14N2
Mr198.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1802 (9), 7.6509 (10), 10.8120 (14)
α, β, γ (°)106.957 (2), 91.859 (2), 95.720 (2)
V3)564.12 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.986, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7262, 2581, 1694
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.168, 1.02
No. of reflections2581
No. of parameters142
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are centroids of the N2,C1–C5 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N2i0.865 (10)2.120 (10)2.978 (2)171.6 (19)
C6—H6b···Cg1ii0.962.733.624 (3)155
C13—H13b···Cg2iii0.962.743.612 (2)151
C13—H13c···Cg2iv0.962.883.642 (2)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1; (iii) x+2, y+2, z+2; (iv) x+1, y+2, z+2.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

We thank the University of Malaya (grant No. FP001/2010 A) for supporting this study.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2010). Acta Cryst. E66, m165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds