organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Naphthalen-2-yl­­oxy)-5-nitro­pyridine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 October 2011; accepted 24 October 2011; online 29 October 2011)

A nearly orthogonal relationship is found for the ring systems in the title compound, C15H10N2O3, with the dihedral angle between the rings being 86.13 (11)°. The nitro group is approximately coplanar with the pyridine ring to which it is connected [the O—N—C—C torsion angle = −1.8 (4)°]. This coplanarity allows for the close approach of these residues in the crystal structure enabling the formation of N—O⋯π(pyridine) inter­actions [3.547 (4) Å]. Further consolidation of the crystal packing is afforded by weak ππ inter­actions [centroid–centroid distances = 3.9576 (16) and 3.9822 (16) Å].

Related literature

For the structure of a related nitro­pyridine derivative, see: Nasir et al. (2010[Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2428.]). For discussion on nitro-O⋯π inter­actions, see: Huang et al. (2008[Huang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720-13723.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N2O3

  • Mr = 266.25

  • Monoclinic, P 21 /c

  • a = 6.7389 (12) Å

  • b = 8.9182 (16) Å

  • c = 21.072 (4) Å

  • β = 94.289 (3)°

  • V = 1262.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.985

  • 6512 measured reflections

  • 2224 independent reflections

  • 1052 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.193

  • S = 0.94

  • 2224 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural studies of nitro-pyridine derivatives (Nasir et al., 2010), the title compound was synthesized and characterized crystallographically. The molecule of (I), Fig. 1, is highly twisted as seen in the near orthogonal relationship between the two ring systems with the dihedral angle formed between the nitro-pyridine ring and naphthalyl ring being 86.13 (11)°. The nitro group is co-planar with the pyridyl ring to which it is attached with the O2—N2—C4—C3 torsion angle being -1.8 (4)°.

The most prominent feature of the crystal packing appears to be N—O···π interactions (Huang et al., 2008). The distance between O3···π(pyridyl) = 3.547 (4) Å, with the N2—O3···ring centroid(pyridyl)i angle = 81.9 (2)° for symmetry operation i: 1 - x, 1 - y, 1 - z. Similar interactions were reported in the crystal structure of 2-(4-methoxyphenoxy)-3-nitropyridine (Nasir et al., 2010). In (I), the N—O···π interactions along with weak ππ interactions, whereby both rings of the naphthalyl residue interact with the pyridyl ring, consolidate the crystal packing. The parameters associated with the ππ interactions are ring centroid(pyridyl)···ring centroid(C6–C11) and (C10–C15) = 3.9822 (16) and 3.9576 (16) Å, respectively, for ii: 1 - x, -1/2 + y, 3/2 - z. A view of the crystal packing is shown in Fig. 2.

Related literature top

For the structure of a related nitropyridine derivative, see: Nasir et al. (2010). For discussion on nitro-O···π interactions, see: Huang et al. (2008).

Experimental top

2-Naphthol (2.88 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) were dissolved in water (50 ml) and to the solution was added 2-chloro-5-nitropyridine (3.17 g, 20 mmol) dissolved in THF (50 ml). The mixture was heated for 7 h. Water was added and the organic phase extracted with chloroform. The chloroform solution was dried over sodium sulfate; slow evaporation led to the formation of colourless crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.93 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2Ueq(C). The naphthalene fused-ring was refined as two fused hexagons with CC distances fixed at 1.39 Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Unit-cell contents for (I) shown in projection down the a axis. The N—O···π and ππ interactions are shown as orange and purple dashed lines, respectively.
2-(Naphthalen-2-yloxy)-5-nitropyridine top
Crystal data top
C15H10N2O3F(000) = 552
Mr = 266.25Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1499 reflections
a = 6.7389 (12) Åθ = 2.5–21.3°
b = 8.9182 (16) ŵ = 0.10 mm1
c = 21.072 (4) ÅT = 293 K
β = 94.289 (3)°Block, colourless
V = 1262.9 (4) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2224 independent reflections
Radiation source: fine-focus sealed tube1052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.976, Tmax = 0.985k = 910
6512 measured reflectionsl = 2325
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
2224 reflectionsΔρmax = 0.26 e Å3
158 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (5)
Crystal data top
C15H10N2O3V = 1262.9 (4) Å3
Mr = 266.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7389 (12) ŵ = 0.10 mm1
b = 8.9182 (16) ÅT = 293 K
c = 21.072 (4) Å0.25 × 0.20 × 0.15 mm
β = 94.289 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2224 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1052 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.985Rint = 0.052
6512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 0.94Δρmax = 0.26 e Å3
2224 reflectionsΔρmin = 0.18 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5816 (3)0.6709 (3)0.69203 (11)0.0864 (8)
O20.8327 (5)0.2782 (3)0.47200 (13)0.1210 (11)
O30.5363 (6)0.1958 (4)0.48260 (14)0.1319 (12)
N10.4532 (4)0.4809 (3)0.62772 (12)0.0709 (8)
N20.6776 (7)0.2766 (4)0.49811 (14)0.0929 (10)
C10.6029 (5)0.5686 (4)0.64546 (14)0.0662 (8)
C20.7856 (5)0.5678 (4)0.61964 (15)0.0796 (10)
H20.88680.63230.63470.096*
C30.8131 (5)0.4702 (4)0.57165 (15)0.0804 (10)
H30.93390.46530.55310.097*
C40.6578 (6)0.3793 (3)0.55143 (13)0.0663 (9)
C50.4845 (6)0.3863 (3)0.58025 (15)0.0747 (10)
H50.38190.32190.56620.090*
C60.41265 (19)0.58487 (18)0.78172 (8)0.0638 (8)
H60.52130.52460.79410.077*
C70.4128 (2)0.6695 (2)0.72633 (7)0.0638 (8)
C80.2505 (3)0.75959 (18)0.70776 (6)0.0727 (9)
H80.25060.81620.67070.087*
C90.0879 (2)0.76505 (16)0.74459 (7)0.0740 (9)
H90.02080.82530.73220.089*
C100.08767 (17)0.68042 (13)0.79997 (6)0.0565 (8)
C110.25006 (17)0.59033 (13)0.81854 (6)0.0521 (7)
C120.2499 (3)0.50569 (17)0.87393 (7)0.0714 (9)
H120.35850.44540.88630.086*
C130.0873 (3)0.5111 (2)0.91075 (7)0.0822 (10)
H130.08720.45450.94780.099*
C140.0751 (3)0.6012 (2)0.89219 (8)0.0864 (11)
H140.18390.60490.91680.104*
C150.07492 (19)0.6859 (2)0.83680 (9)0.0745 (10)
H150.18360.74610.82440.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0829 (16)0.0914 (17)0.0898 (16)0.0342 (13)0.0385 (13)0.0301 (14)
O20.158 (3)0.121 (2)0.089 (2)0.032 (2)0.0437 (19)0.0121 (16)
O30.164 (3)0.118 (2)0.110 (2)0.007 (2)0.016 (2)0.0479 (19)
N10.0775 (18)0.0660 (17)0.0704 (17)0.0159 (14)0.0136 (14)0.0087 (14)
N20.133 (3)0.083 (2)0.062 (2)0.023 (2)0.000 (2)0.0026 (18)
C10.074 (2)0.067 (2)0.0588 (19)0.0110 (17)0.0132 (16)0.0046 (16)
C20.073 (2)0.094 (2)0.074 (2)0.0240 (19)0.0173 (18)0.012 (2)
C30.085 (3)0.095 (3)0.063 (2)0.000 (2)0.0180 (19)0.003 (2)
C40.089 (3)0.063 (2)0.0475 (18)0.0060 (18)0.0089 (17)0.0015 (15)
C50.092 (3)0.065 (2)0.067 (2)0.0149 (18)0.0039 (19)0.0038 (17)
C60.0594 (19)0.0561 (18)0.075 (2)0.0043 (14)0.0001 (16)0.0062 (16)
C70.068 (2)0.0581 (19)0.066 (2)0.0146 (15)0.0123 (16)0.0168 (16)
C80.090 (2)0.061 (2)0.064 (2)0.0162 (18)0.0125 (18)0.0053 (16)
C90.064 (2)0.069 (2)0.086 (2)0.0077 (16)0.0115 (18)0.0010 (18)
C100.0562 (18)0.0519 (17)0.0608 (18)0.0013 (14)0.0011 (15)0.0056 (14)
C110.0529 (17)0.0497 (16)0.0535 (17)0.0008 (13)0.0023 (13)0.0044 (14)
C120.083 (2)0.065 (2)0.066 (2)0.0065 (16)0.0013 (18)0.0028 (16)
C130.114 (3)0.073 (2)0.061 (2)0.008 (2)0.016 (2)0.0011 (17)
C140.077 (3)0.094 (3)0.092 (3)0.009 (2)0.026 (2)0.022 (2)
C150.062 (2)0.077 (2)0.085 (2)0.0101 (16)0.0050 (18)0.0151 (19)
Geometric parameters (Å, º) top
O1—C11.355 (3)C6—H60.9300
O1—C71.393 (2)C7—C81.3900
O2—N21.217 (4)C8—C91.3900
O3—N21.219 (4)C8—H80.9300
N1—C11.309 (4)C9—C101.3900
N1—C51.337 (4)C9—H90.9300
N2—C41.463 (4)C10—C111.3900
C1—C21.383 (4)C10—C151.3900
C2—C31.358 (4)C11—C121.3900
C2—H20.9300C12—C131.3900
C3—C41.366 (4)C12—H120.9300
C3—H30.9300C13—C141.3900
C4—C51.358 (4)C13—H130.9300
C5—H50.9300C14—C151.3900
C6—C71.3900C14—H140.9300
C6—C111.3900C15—H150.9300
C1—O1—C7120.3 (2)C8—C7—O1120.35 (16)
C1—N1—C5115.4 (3)C7—C8—C9120.0
O2—N2—O3124.5 (4)C7—C8—H8120.0
O2—N2—C4118.0 (4)C9—C8—H8120.0
O3—N2—C4117.5 (4)C10—C9—C8120.0
N1—C1—O1119.2 (3)C10—C9—H9120.0
N1—C1—C2125.1 (3)C8—C9—H9120.0
O1—C1—C2115.7 (3)C9—C10—C11120.0
C3—C2—C1118.1 (3)C9—C10—C15120.0
C3—C2—H2120.9C11—C10—C15120.0
C1—C2—H2120.9C12—C11—C10120.0
C2—C3—C4118.0 (3)C12—C11—C6120.0
C2—C3—H3121.0C10—C11—C6120.0
C4—C3—H3121.0C13—C12—C11120.0
C5—C4—C3119.8 (3)C13—C12—H12120.0
C5—C4—N2120.2 (4)C11—C12—H12120.0
C3—C4—N2119.9 (3)C12—C13—C14120.0
N1—C5—C4123.6 (3)C12—C13—H13120.0
N1—C5—H5118.2C14—C13—H13120.0
C4—C5—H5118.2C15—C14—C13120.0
C7—C6—C11120.0C15—C14—H14120.0
C7—C6—H6120.0C13—C14—H14120.0
C11—C6—H6120.0C14—C15—C10120.0
C6—C7—C8120.0C14—C15—H15120.0
C6—C7—O1119.52 (16)C10—C15—H15120.0
C5—N1—C1—O1178.1 (3)C1—O1—C7—C894.2 (3)
C5—N1—C1—C21.0 (5)C6—C7—C8—C90.0
C7—O1—C1—N18.4 (4)O1—C7—C8—C9175.77 (15)
C7—O1—C1—C2172.4 (3)C7—C8—C9—C100.0
N1—C1—C2—C30.8 (5)C8—C9—C10—C110.0
O1—C1—C2—C3178.3 (3)C8—C9—C10—C15180.0
C1—C2—C3—C40.5 (5)C9—C10—C11—C12180.0
C2—C3—C4—C51.4 (5)C15—C10—C11—C120.0
C2—C3—C4—N2177.5 (3)C9—C10—C11—C60.0
O2—N2—C4—C5177.1 (3)C15—C10—C11—C6180.0
O3—N2—C4—C52.4 (5)C7—C6—C11—C12180.0
O2—N2—C4—C31.8 (4)C7—C6—C11—C100.0
O3—N2—C4—C3178.7 (3)C10—C11—C12—C130.0
C1—N1—C5—C40.1 (5)C6—C11—C12—C13180.0
C3—C4—C5—N11.3 (5)C11—C12—C13—C140.0
N2—C4—C5—N1177.6 (3)C12—C13—C14—C150.0
C11—C6—C7—C80.0C13—C14—C15—C100.0
C11—C6—C7—O1175.81 (15)C9—C10—C15—C14180.0
C1—O1—C7—C690.0 (3)C11—C10—C15—C140.0

Experimental details

Crystal data
Chemical formulaC15H10N2O3
Mr266.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.7389 (12), 8.9182 (16), 21.072 (4)
β (°) 94.289 (3)
V3)1262.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6512, 2224, 1052
Rint0.052
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.193, 0.94
No. of reflections2224
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

We thank the University of Malaya (grant No. RG027/09AFR) for supporting this study.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720–13723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds