organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R,4aS,4bS,7R,10aR)-4-Hy­dr­oxy-4a,7-di­methyl-2-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a-deca­hydro­phenanthren-1-one

aBioMat-Departamento de Física, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil, bLaboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Universidade Federal de São Carlos, Departamento de Química, CP 676, 13565-905, São Carlos, SP, Brazil, cDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

(Received 24 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title compound, C19H28O2, the A ring adopts a chair conformation, and each of the B and C rings adopts a distorted half-chair conformation with the methine C atom in the CH2C(H)C(=O) residue, common to both rings, lying 0.6397 (19) and 0.6328 (18) Å out of the approximate plane defined by the remaining five C atoms (r.m.s. deviations = 0.0791 and 0.0901 Å for rings B and C, respectively). Helical supra­molecular chains along the a axis mediated by hy­droxy–carbonyl O—H⋯O hydrogen bonds feature in the crystal packing.

Related literature

For background to the biological activity of some diterpene compounds, see: Guo et al. (2011[Guo, P., Li, Y., Xu, J., Guo, Y., Jin, D.-Q., Gao, J., Hou, W. & Zhang, T. (2011). Fitoterapia, 82, 1123-1127.]); Slusarczyk et al. (2011[Slusarczyk, S., Zimmermann, S., Kaiser, M., Matkowski, A., Hamburger, M. & Adams, M. (2011). Planta Med. 77, 1594-1596.]). For the synthesis, see: Ferreira (2002[Ferreira, M. L. (2002). PhD thesis, Universidade Federal de São Carlos, Brazil.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H28O2

  • Mr = 288.41

  • Orthorhombic, P 21 21 21

  • a = 7.3029 (9) Å

  • b = 13.211 (2) Å

  • c = 17.224 (3) Å

  • V = 1661.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 290 K

  • 0.12 × 0.08 × 0.07 mm

Data collection
  • Enraf–Nonius CAD-4 MACH 3 diffractometer

  • 3684 measured reflections

  • 3243 independent reflections

  • 2253 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 30 min intensity decay: 1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 1.04

  • 3243 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O1i 0.82 2.01 2.805 (2) 162
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (Chemaxon, 2009[Chemaxon (2009). MarvinSketch. www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Natural diterpenes exhibit a wide range of biological activities such as neuroprotectives (Guo et al. 2011) and as antiplasmodials and antitrypanocidals (Slusarczyk et al. 2011). While aiming at the synthesis of some hydrophenanthrene diterpenes, a series of new intermediates were obtained and among them, was the title compound (Ferreira, 2002), (I), which has been characterized crystallographically.

The A ring has a chair conformation. Each of the B and C rings presents a distorted half-chair conformation with atom C7, common to both rings, lying 0.6397 (19) and 0.6328 (18) Å, for B and C, respectively, out of the approximate plane defined by the remaining five C atoms (r.m.s. deviations = 0.0791 and 0.0901, respectively). The ring puckering parameters are: q2 = 0.003 (2), 0.360 (2), 0.363 (2) Å; q3 = 0.570 (2), -0.315 (2), -0.332 (2) Å; QT = 0.570 (2), 0.478 (2), 0.492 (2) Å; and θ = 1.7 (2), 131.1 (2), 132.5 (2)°, for rings A, B and C, respectively (Cremer & Pople, 1975).

In the crystal packing, the molecules are linked through O–H···O hydrogen bonds to form supramolecular helical chains along the a axis, Fig. 2 and Table 1.

Related literature top

For background to the biological activity of some diterpene compounds, see: Guo et al. (2011); Slusarczyk et al. (2011). For the synthesis, see: Ferreira (2002). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

The detailed synthesis of the title compound is described in a Ph.D. thesis (Ferreira, 2002). Crystals were grown by slow evaporation from its hexane solution held at 293 K; M.pt: 466.2–468.1 K. 1H-NMR (CDCl3, 400 MHz): δ (p.p.m.): 6.44 (d, 1H, J = 3.8 Hz); 5.26 (s, 1H); 4.58 (s, 1H); 2.81–2.87 (m, 1H); 2.86–2.92 (m, 1H); 2.24 (d, 1H, J = 6.4 Hz); 2.10–2.26 (m, 2H); 1.90–2.10 (m, 2H); 1.82–2.10 (m, 1H); 1.37–1.54 (m, 4H); 1.27 (s, 3H); 1.04 (d, 3H, J = 6.8 Hz); 1.01 (d, 3H, J = 6.8 Hz); 0.73 (d, 3H, J = 6.8 Hz); δ(OH) not obs. 13C (CDCl3, 100 MHz) δ (p.p.m.): 197.9; 144.4; 142.7; 135.5; 117.2; 76.1; 49.6; 49.5; 45.9; 44.6; 35.7; 35.6; 33.6; 23.6; 22.3; 21.7; 21.5; 20.2; 20.0. Analysis found: C 78.99, H 9.77%. C19H28O2 requires: C 79.12, H 9.79%.

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.98 Å; O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl-C,O). The absolute structure was based on that of a starting material used in the synthesis (Ferreira, 2002).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing atom labelling scheme and displacement ellipsoids at the 30% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the helical supramolecular chain along the a axis in (I). The hydroxy-O—H···O(carbonyl) hydrogen bonds are represented by orange dashed lines.
(4R,4aS,4 bS,7R,10aR)- 4-Hydroxy-4a,7-dimethyl-2-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a- decahydrophenanthren-1-one top
Crystal data top
C19H28O2F(000) = 632
Mr = 288.41Dx = 1.153 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.3029 (9) Åθ = 9.2–14.3°
b = 13.211 (2) ŵ = 0.07 mm1
c = 17.224 (3) ÅT = 290 K
V = 1661.8 (4) Å3Irregular, colourless
Z = 40.12 × 0.08 × 0.07 mm
Data collection top
Enraf–Nonius CAD-4 MACH 3
diffractometer
Rint = 0.031
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.9°
Graphite monochromatorh = 08
ω/–2θ scansk = 016
3684 measured reflectionsl = 2121
3243 independent reflections3 standard reflections every 30 min
2253 reflections with I > 2σ(I) intensity decay: 1.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.0421P]
where P = (Fo2 + 2Fc2)/3
3243 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C19H28O2V = 1661.8 (4) Å3
Mr = 288.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3029 (9) ŵ = 0.07 mm1
b = 13.211 (2) ÅT = 290 K
c = 17.224 (3) Å0.12 × 0.08 × 0.07 mm
Data collection top
Enraf–Nonius CAD-4 MACH 3
diffractometer
Rint = 0.031
3684 measured reflections3 standard reflections every 30 min
3243 independent reflections intensity decay: 1.1%
2253 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
3243 reflectionsΔρmin = 0.13 e Å3
195 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6835 (3)0.92045 (14)0.83208 (11)0.0386 (4)
H10.57210.90420.86130.046*
C20.6251 (2)0.99993 (14)0.77072 (11)0.0378 (4)
C30.5391 (2)0.95441 (16)0.69613 (12)0.0457 (5)
H30.47621.00960.66910.055*
C40.6752 (3)0.91091 (16)0.64072 (11)0.0448 (5)
H40.63110.86590.60360.054*
C50.8545 (2)0.93064 (15)0.63955 (10)0.0387 (4)
C60.9268 (2)0.99737 (15)0.70073 (11)0.0382 (4)
C70.7918 (3)1.06323 (13)0.74402 (11)0.0417 (5)
H70.74681.11440.70750.050*
C80.8794 (3)1.11916 (16)0.81222 (12)0.0498 (5)
H8A0.99851.14470.79670.060*
H8B0.80361.17660.82630.060*
C90.9011 (3)1.05182 (15)0.88050 (12)0.0471 (5)
H90.98141.07250.91930.056*
C100.8151 (3)0.96451 (16)0.89061 (11)0.0415 (4)
C110.8553 (3)0.89695 (17)0.95906 (12)0.0571 (6)
H11A0.74350.88530.98810.068*
H11B0.94240.93000.99320.068*
C120.9340 (4)0.79528 (18)0.93174 (14)0.0613 (7)
H120.94030.74990.97670.074*
C130.8019 (4)0.74886 (17)0.87258 (13)0.0626 (7)
H13A0.85390.68620.85320.075*
H13B0.68780.73240.89850.075*
C140.7615 (3)0.81779 (14)0.80467 (12)0.0462 (5)
H14A0.67390.78520.77050.055*
H14B0.87310.82920.77550.055*
C150.4816 (3)1.06970 (16)0.80839 (13)0.0520 (5)
H15A0.45611.12540.77430.078*
H15B0.52821.09500.85680.078*
H15C0.37111.03220.81760.078*
C160.9912 (3)0.88187 (16)0.58484 (11)0.0439 (5)
H161.08300.84790.61720.053*
C171.0923 (3)0.95967 (18)0.53606 (13)0.0618 (6)
H17A1.15381.00670.56960.093*
H17B1.00640.99540.50400.093*
H17C1.18060.92600.50380.093*
C180.9070 (3)0.80139 (17)0.53282 (14)0.0597 (6)
H18A0.81670.83190.49980.090*
H18B0.85010.75030.56430.090*
H18C1.00090.77110.50150.090*
C191.1271 (4)0.8076 (2)0.89947 (16)0.0762 (8)
H19A1.12460.85340.85620.114*
H19B1.17240.74300.88270.114*
H19C1.20580.83430.93920.114*
O11.09041 (18)1.00004 (12)0.71585 (9)0.0548 (4)
O20.4059 (2)0.87899 (12)0.71243 (11)0.0637 (5)
H2o0.30320.90360.70890.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (9)0.0390 (10)0.0431 (10)0.0005 (8)0.0042 (8)0.0009 (8)
C20.0291 (9)0.0410 (10)0.0433 (10)0.0040 (8)0.0015 (8)0.0020 (9)
C30.0289 (9)0.0551 (12)0.0531 (11)0.0041 (8)0.0081 (8)0.0028 (10)
C40.0362 (10)0.0579 (13)0.0403 (10)0.0065 (9)0.0090 (8)0.0087 (10)
C50.0311 (10)0.0456 (10)0.0395 (10)0.0037 (8)0.0032 (7)0.0031 (9)
C60.0313 (9)0.0415 (10)0.0419 (10)0.0020 (8)0.0019 (8)0.0072 (9)
C70.0419 (11)0.0357 (10)0.0476 (11)0.0007 (9)0.0046 (8)0.0046 (9)
C80.0495 (12)0.0389 (10)0.0611 (13)0.0058 (10)0.0002 (10)0.0079 (10)
C90.0450 (11)0.0497 (12)0.0465 (11)0.0010 (10)0.0085 (9)0.0142 (9)
C100.0393 (10)0.0458 (11)0.0393 (10)0.0087 (9)0.0003 (8)0.0045 (9)
C110.0652 (15)0.0656 (14)0.0404 (11)0.0150 (12)0.0001 (10)0.0004 (10)
C120.0764 (16)0.0607 (14)0.0467 (12)0.0222 (13)0.0046 (11)0.0148 (11)
C130.0857 (18)0.0395 (12)0.0626 (14)0.0097 (12)0.0142 (13)0.0084 (11)
C140.0527 (11)0.0352 (10)0.0507 (11)0.0007 (9)0.0008 (10)0.0012 (9)
C150.0426 (11)0.0572 (12)0.0563 (12)0.0147 (10)0.0011 (10)0.0066 (11)
C160.0340 (10)0.0536 (12)0.0440 (11)0.0109 (10)0.0015 (9)0.0001 (9)
C170.0585 (14)0.0705 (15)0.0565 (13)0.0026 (13)0.0138 (12)0.0031 (12)
C180.0542 (13)0.0635 (14)0.0615 (14)0.0150 (12)0.0001 (12)0.0155 (11)
C190.0692 (17)0.0917 (19)0.0677 (15)0.0340 (16)0.0017 (13)0.0006 (15)
O10.0310 (7)0.0714 (10)0.0622 (10)0.0043 (7)0.0035 (7)0.0086 (8)
O20.0282 (7)0.0769 (11)0.0861 (12)0.0086 (8)0.0018 (8)0.0182 (9)
Geometric parameters (Å, º) top
C1—C101.510 (3)C11—H11B0.9700
C1—C141.545 (3)C12—C191.524 (4)
C1—C21.550 (3)C12—C131.532 (4)
C1—H10.9800C12—H120.9800
C2—C151.539 (3)C13—C141.511 (3)
C2—C71.547 (3)C13—H13A0.9700
C2—C31.551 (3)C13—H13B0.9700
C3—O21.421 (3)C14—H14A0.9700
C3—C41.493 (3)C14—H14B0.9700
C3—H30.9800C15—H15A0.9600
C4—C51.335 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.472 (3)C16—C171.519 (3)
C5—C161.517 (3)C16—C181.520 (3)
C6—O11.223 (2)C16—H160.9800
C6—C71.512 (3)C17—H17A0.9600
C7—C81.528 (3)C17—H17B0.9600
C7—H70.9800C17—H17C0.9600
C8—C91.483 (3)C18—H18A0.9600
C8—H8A0.9700C18—H18B0.9600
C8—H8B0.9700C18—H18C0.9600
C9—C101.325 (3)C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C10—C111.507 (3)C19—H19C0.9600
C11—C121.535 (3)O2—H2o0.8200
C11—H11A0.9700
C10—C1—C14107.93 (16)H11A—C11—H11B108.1
C10—C1—C2111.68 (15)C19—C12—C13112.5 (2)
C14—C1—C2119.21 (15)C19—C12—C11111.4 (2)
C10—C1—H1105.7C13—C12—C11108.6 (2)
C14—C1—H1105.7C19—C12—H12108.1
C2—C1—H1105.7C13—C12—H12108.1
C15—C2—C7109.71 (16)C11—C12—H12108.1
C15—C2—C1107.80 (15)C14—C13—C12113.36 (19)
C7—C2—C1110.64 (15)C14—C13—H13A108.9
C15—C2—C3107.81 (15)C12—C13—H13A108.9
C7—C2—C3106.38 (15)C14—C13—H13B108.9
C1—C2—C3114.42 (16)C12—C13—H13B108.9
O2—C3—C4108.20 (17)H13A—C13—H13B107.7
O2—C3—C2112.67 (17)C13—C14—C1111.38 (16)
C4—C3—C2114.15 (15)C13—C14—H14A109.4
O2—C3—H3107.1C1—C14—H14A109.4
C4—C3—H3107.1C13—C14—H14B109.4
C2—C3—H3107.1C1—C14—H14B109.4
C5—C4—C3125.97 (18)H14A—C14—H14B108.0
C5—C4—H4117.0C2—C15—H15A109.5
C3—C4—H4117.0C2—C15—H15B109.5
C4—C5—C6117.27 (17)H15A—C15—H15B109.5
C4—C5—C16124.90 (18)C2—C15—H15C109.5
C6—C5—C16117.57 (16)H15A—C15—H15C109.5
O1—C6—C5121.36 (18)H15B—C15—H15C109.5
O1—C6—C7121.03 (18)C5—C16—C17112.10 (17)
C5—C6—C7117.61 (15)C5—C16—C18113.38 (17)
C6—C7—C8112.58 (17)C17—C16—C18110.12 (18)
C6—C7—C2110.42 (15)C5—C16—H16107.0
C8—C7—C2111.26 (16)C17—C16—H16107.0
C6—C7—H7107.4C18—C16—H16107.0
C8—C7—H7107.4C16—C17—H17A109.5
C2—C7—H7107.4C16—C17—H17B109.5
C9—C8—C7111.36 (16)H17A—C17—H17B109.5
C9—C8—H8A109.4C16—C17—H17C109.5
C7—C8—H8A109.4H17A—C17—H17C109.5
C9—C8—H8B109.4H17B—C17—H17C109.5
C7—C8—H8B109.4C16—C18—H18A109.5
H8A—C8—H8B108.0C16—C18—H18B109.5
C10—C9—C8125.16 (18)H18A—C18—H18B109.5
C10—C9—H9117.4C16—C18—H18C109.5
C8—C9—H9117.4H18A—C18—H18C109.5
C9—C10—C11121.7 (2)H18B—C18—H18C109.5
C9—C10—C1123.35 (18)C12—C19—H19A109.5
C11—C10—C1114.70 (18)C12—C19—H19B109.5
C10—C11—C12110.57 (17)H19A—C19—H19B109.5
C10—C11—H11A109.5C12—C19—H19C109.5
C12—C11—H11A109.5H19A—C19—H19C109.5
C10—C11—H11B109.5H19B—C19—H19C109.5
C12—C11—H11B109.5C3—O2—H2o109.5
C10—C1—C2—C1577.5 (2)C3—C2—C7—C658.80 (19)
C14—C1—C2—C15155.54 (17)C15—C2—C7—C859.1 (2)
C10—C1—C2—C742.5 (2)C1—C2—C7—C859.7 (2)
C14—C1—C2—C784.5 (2)C3—C2—C7—C8175.44 (16)
C10—C1—C2—C3162.63 (15)C6—C7—C8—C979.0 (2)
C14—C1—C2—C335.6 (2)C2—C7—C8—C945.5 (2)
C15—C2—C3—O273.6 (2)C7—C8—C9—C1017.0 (3)
C7—C2—C3—O2168.73 (15)C8—C9—C10—C11175.48 (19)
C1—C2—C3—O246.3 (2)C8—C9—C10—C11.1 (3)
C15—C2—C3—C4162.42 (17)C14—C1—C10—C9118.6 (2)
C7—C2—C3—C444.8 (2)C2—C1—C10—C914.3 (3)
C1—C2—C3—C477.7 (2)C14—C1—C10—C1156.2 (2)
O2—C3—C4—C5144.8 (2)C2—C1—C10—C11170.94 (16)
C2—C3—C4—C518.5 (3)C9—C10—C11—C12116.8 (2)
C3—C4—C5—C63.3 (3)C1—C10—C11—C1258.0 (3)
C3—C4—C5—C16177.17 (19)C10—C11—C12—C1970.1 (3)
C4—C5—C6—O1162.0 (2)C10—C11—C12—C1354.3 (3)
C16—C5—C6—O112.4 (3)C19—C12—C13—C1468.0 (3)
C4—C5—C6—C718.4 (3)C11—C12—C13—C1455.8 (3)
C16—C5—C6—C7167.19 (17)C12—C13—C14—C156.9 (3)
O1—C6—C7—C87.3 (3)C10—C1—C14—C1354.0 (2)
C5—C6—C7—C8173.06 (16)C2—C1—C14—C13177.28 (19)
O1—C6—C7—C2132.3 (2)C4—C5—C16—C17121.9 (2)
C5—C6—C7—C248.0 (2)C6—C5—C16—C1764.2 (2)
C15—C2—C7—C6175.15 (16)C4—C5—C16—C183.5 (3)
C1—C2—C7—C666.04 (19)C6—C5—C16—C18170.39 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O1i0.822.012.805 (2)162
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H28O2
Mr288.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)290
a, b, c (Å)7.3029 (9), 13.211 (2), 17.224 (3)
V3)1661.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.12 × 0.08 × 0.07
Data collection
DiffractometerEnraf–Nonius CAD-4 MACH 3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3684, 3243, 2253
Rint0.031
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 1.04
No. of reflections3243
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), MolEN (Fair, 1990), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O1i0.822.012.805 (2)162
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank FAPESP, CNPq (306532/2009–3 to JZ-S; 308116/2010–0 to IC) and CAPES (808/2009 to JZ-S and IC) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemaxon (2009). MarvinSketch. www.chemaxon.comGoogle Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, M. L. (2002). PhD thesis, Universidade Federal de São Carlos, Brazil.  Google Scholar
First citationGuo, P., Li, Y., Xu, J., Guo, Y., Jin, D.-Q., Gao, J., Hou, W. & Zhang, T. (2011). Fitoterapia, 82, 1123–1127.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlusarczyk, S., Zimmermann, S., Kaiser, M., Matkowski, A., Hamburger, M. & Adams, M. (2011). Planta Med. 77, 1594–1596.  Web of Science CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds