metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­{[N-(4-methyl­phen­yl)pyridin-2-amine-κN1]copper(II)}(CuCu)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 October 2011; accepted 25 October 2011; online 29 October 2011)

The complete dinuclear mol­ecule of the title complex, [Cu2(CH3COO)4(C12H12N2)2], is generated by a centre of inversion. The CuII atoms are connected [Cu—Cu = 2.6329 (16) Å] and bridged by four acetate ligands. The distorted octa­hedral coordination geometry is completed by a terminal pyridine N atom. The amine H atom forms an intra­molecular N—H⋯O hydrogen bond.

Related literature

For related examples of tetra­kis­acetato­bis­[(substituted 2-amino­pyrid­yl)copper] complexes, see: Fairuz et al. (2010a[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1049-m1050.],b[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, m1077-m1078.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C12H12N2)2]

  • Mr = 731.75

  • Monoclinic, P 21 /c

  • a = 7.6285 (9) Å

  • b = 11.3242 (13) Å

  • c = 18.566 (2) Å

  • β = 95.717 (2)°

  • V = 1595.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 100 K

  • 0.22 × 0.13 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.495, Tmax = 0.862

  • 11607 measured reflections

  • 2806 independent reflections

  • 2203 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.209

  • S = 1.08

  • 2806 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −1.29 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O2i 1.947 (5)
Cu—O1 1.950 (5)
Cu—O3 1.976 (5)
Cu—O4i 1.976 (5)
Cu—N1 2.205 (6)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O3 0.86 2.21 2.911 (8) 139

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title complex, (I), was investigated in connection with structural studies of tetrakisacetatobis[(substituted 2-aminopyridyl)copper(II)] complexes (Fairuz et al., 2010a; Fairuz et al., 2010b). The complex, Fig. 1, is centrosymmetric and feature four symmetrically bridging acetate ligands and two terminally connected pyridyl-N atoms. These define an NO4 donor set and the distorted octahedral geometry is completed by a Cu atom, Table 1. The orientation of the N-p-tolylpyridin-2-amine ligand is such to enable the formation of an intramolecular N—H···O hydrogen bond, Table 2. The pyridyl-2-amine ligand is twisted with the dihedral angle between the pyridyl and benzene rings being 59.3 (4)°.

Related literature top

For related examples of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Fairuz et al. (2010a,b).

Experimental top

N-p-Tolylpyridin-2-amine (0.2 g, 1.1 mmol) was dissolved in acetonitrile (15 ml), added to trimethyl orthoformate (10 ml) and the mixture then heated to 50 °C. Copper acetate (0.1 g, 0.5 mmol) dissolved in acetonitrile (15 ml) was added to the solution. The green precipitate that formed, was collected and recrystallized from acetonitrile to give green crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95–098 Å, N–H 0.86 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times Ueq(C). The maximum and minimum residual electron density peaks of 1.31 and 1.89 e Å-3, respectively, were located 1.08 Å and 0.91 Å from the Cu atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The complex is centrosymmetric. The unlabelled atoms are related by the symmetry operation 1 - x, 1 - y, 1 - z.
Tetra-µ-acetato-κ8O:O'-bis{[N-(4- methylphenyl)pyridin-2-amine-κN1]copper(II)}(CuCu) top
Crystal data top
[Cu2(C2H3O2)4(C12H12N2)2]F(000) = 756
Mr = 731.75Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2708 reflections
a = 7.6285 (9) Åθ = 2.7–23.1°
b = 11.3242 (13) ŵ = 1.39 mm1
c = 18.566 (2) ÅT = 100 K
β = 95.717 (2)°Prism, green
V = 1595.9 (3) Å30.22 × 0.13 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2806 independent reflections
Radiation source: fine-focus sealed tube2203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.495, Tmax = 0.862k = 1313
11607 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0765P)2 + 11.519P]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max = 0.004
211 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 1.29 e Å3
Crystal data top
[Cu2(C2H3O2)4(C12H12N2)2]V = 1595.9 (3) Å3
Mr = 731.75Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.6285 (9) ŵ = 1.39 mm1
b = 11.3242 (13) ÅT = 100 K
c = 18.566 (2) Å0.22 × 0.13 × 0.05 mm
β = 95.717 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2806 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2203 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.862Rint = 0.103
11607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0765P)2 + 11.519P]
where P = (Fo2 + 2Fc2)/3
2806 reflectionsΔρmax = 1.31 e Å3
211 parametersΔρmin = 1.29 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.59639 (11)0.59398 (7)0.51769 (5)0.0291 (3)
O10.7488 (7)0.4818 (4)0.5735 (3)0.0422 (14)
O20.5861 (7)0.3220 (5)0.5427 (3)0.0424 (14)
O30.4444 (7)0.6035 (5)0.5977 (3)0.0408 (13)
O40.2853 (7)0.4450 (5)0.5692 (3)0.0426 (14)
N10.7623 (8)0.7488 (5)0.5486 (3)0.0301 (13)
N20.5402 (8)0.8521 (6)0.5941 (4)0.0422 (17)
H2n0.47260.79480.57850.051*
C10.7159 (9)0.3738 (6)0.5757 (4)0.0323 (17)
C20.8381 (13)0.2988 (8)0.6240 (5)0.052 (2)
H2A0.82270.21580.60990.079*
H2B0.81190.30850.67430.079*
H2C0.96010.32270.61960.079*
C30.3262 (10)0.5337 (6)0.6077 (4)0.0330 (17)
C40.2223 (13)0.5545 (8)0.6707 (5)0.052 (2)
H4A0.19850.63910.67500.078*
H4B0.28970.52650.71510.078*
H4C0.11050.51130.66330.078*
C50.9295 (9)0.7373 (7)0.5348 (4)0.0377 (18)
H50.96430.66550.51390.045*
C61.0509 (10)0.8218 (8)0.5488 (5)0.047 (2)
H61.16890.81110.53780.056*
C70.9980 (11)0.9249 (7)0.5798 (5)0.047 (2)
H71.08040.98690.59030.057*
C80.8305 (10)0.9382 (7)0.5952 (5)0.0388 (19)
H80.79481.00900.61700.047*
C90.7114 (9)0.8485 (6)0.5790 (4)0.0292 (16)
C100.4654 (10)0.9431 (7)0.6335 (4)0.0345 (17)
C110.4545 (10)1.0572 (7)0.6082 (4)0.0374 (18)
H110.50191.07770.56440.045*
C120.3738 (10)1.1416 (7)0.6472 (4)0.0395 (18)
H120.36731.22040.62960.047*
C130.3027 (10)1.1160 (7)0.7101 (4)0.0376 (18)
C140.3148 (11)0.9995 (8)0.7341 (4)0.045 (2)
H140.26490.97790.77710.054*
C150.3975 (11)0.9159 (7)0.6965 (5)0.044 (2)
H150.40760.83750.71470.053*
C160.2120 (13)1.2061 (9)0.7533 (5)0.058 (2)
H16A0.24871.19520.80500.087*
H16B0.08411.19610.74440.087*
H16C0.24431.28570.73870.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0282 (5)0.0182 (5)0.0409 (5)0.0059 (4)0.0038 (3)0.0019 (4)
O10.034 (3)0.023 (3)0.068 (4)0.000 (2)0.007 (3)0.000 (2)
O20.042 (3)0.023 (3)0.060 (4)0.009 (2)0.004 (3)0.006 (2)
O30.044 (3)0.029 (3)0.052 (3)0.009 (3)0.017 (3)0.002 (2)
O40.039 (3)0.033 (3)0.058 (4)0.014 (3)0.016 (3)0.011 (3)
N10.028 (3)0.021 (3)0.041 (3)0.009 (2)0.002 (3)0.001 (3)
N20.028 (3)0.026 (3)0.073 (5)0.008 (3)0.007 (3)0.015 (3)
C10.027 (4)0.019 (4)0.052 (5)0.001 (3)0.013 (3)0.003 (3)
C20.057 (6)0.031 (5)0.067 (6)0.008 (4)0.005 (5)0.000 (4)
C30.035 (4)0.022 (4)0.043 (4)0.002 (3)0.007 (3)0.005 (3)
C40.058 (6)0.040 (5)0.062 (6)0.004 (4)0.023 (5)0.005 (4)
C50.020 (4)0.034 (4)0.060 (5)0.000 (3)0.008 (3)0.005 (4)
C60.020 (4)0.044 (5)0.076 (6)0.008 (4)0.004 (4)0.006 (4)
C70.033 (4)0.035 (5)0.073 (6)0.018 (4)0.004 (4)0.007 (4)
C80.033 (4)0.023 (4)0.060 (5)0.003 (3)0.000 (4)0.009 (3)
C90.034 (4)0.017 (3)0.036 (4)0.002 (3)0.002 (3)0.002 (3)
C100.031 (4)0.025 (4)0.047 (5)0.002 (3)0.001 (3)0.008 (3)
C110.036 (4)0.030 (4)0.046 (5)0.011 (3)0.008 (3)0.000 (3)
C120.040 (4)0.027 (4)0.052 (5)0.002 (3)0.003 (4)0.004 (4)
C130.038 (4)0.030 (4)0.044 (4)0.000 (3)0.006 (3)0.006 (3)
C140.054 (5)0.040 (5)0.044 (5)0.007 (4)0.016 (4)0.009 (4)
C150.053 (5)0.023 (4)0.058 (5)0.002 (4)0.007 (4)0.010 (4)
C160.060 (6)0.048 (6)0.067 (6)0.009 (5)0.005 (5)0.016 (5)
Geometric parameters (Å, º) top
Cu—O2i1.947 (5)C4—H4C0.9800
Cu—O11.950 (5)C5—C61.339 (11)
Cu—O31.976 (5)C5—H50.9500
Cu—O4i1.976 (5)C6—C71.380 (12)
Cu—N12.205 (6)C6—H60.9500
Cu—Cui2.6329 (16)C7—C81.345 (11)
O1—C11.249 (9)C7—H70.9500
O2—C11.257 (9)C8—C91.376 (10)
O2—Cui1.947 (5)C8—H80.9500
O3—C31.227 (9)C10—C151.361 (11)
O4—C31.254 (9)C10—C111.375 (11)
O4—Cui1.976 (5)C11—C121.381 (11)
N1—C51.332 (9)C11—H110.9500
N1—C91.337 (9)C12—C131.368 (11)
N2—C91.363 (10)C12—H120.9500
N2—C101.417 (10)C13—C141.393 (11)
N2—H2n0.8600C13—C161.508 (11)
C1—C21.494 (11)C14—C151.368 (12)
C2—H2A0.9800C14—H140.9500
C2—H2B0.9800C15—H150.9500
C2—H2C0.9800C16—H16A0.9800
C3—C41.496 (11)C16—H16B0.9800
C4—H4A0.9800C16—H16C0.9800
C4—H4B0.9800
O2i—Cu—O1168.3 (2)H4A—C4—H4C109.5
O2i—Cu—O388.1 (2)H4B—C4—H4C109.5
O1—Cu—O390.0 (2)N1—C5—C6123.4 (8)
O2i—Cu—O4i89.8 (3)N1—C5—H5118.3
O1—Cu—O4i89.5 (3)C6—C5—H5118.3
O3—Cu—O4i167.4 (2)C5—C6—C7117.4 (7)
O2i—Cu—N196.9 (2)C5—C6—H6121.3
O1—Cu—N194.8 (2)C7—C6—H6121.3
O3—Cu—N197.2 (2)C8—C7—C6120.5 (7)
O4i—Cu—N195.3 (2)C8—C7—H7119.8
O2i—Cu—Cui84.36 (16)C6—C7—H7119.8
O1—Cu—Cui83.94 (16)C7—C8—C9119.4 (7)
O3—Cu—Cui82.90 (16)C7—C8—H8120.3
O4i—Cu—Cui84.55 (16)C9—C8—H8120.3
N1—Cu—Cui178.73 (17)N1—C9—N2115.8 (6)
C1—O1—Cu122.9 (5)N1—C9—C8120.2 (7)
C1—O2—Cui122.4 (5)N2—C9—C8124.0 (7)
C3—O3—Cu125.0 (5)C15—C10—C11119.5 (7)
C3—O4—Cui122.4 (5)C15—C10—N2119.1 (7)
C5—N1—C9119.2 (6)C11—C10—N2121.3 (7)
C5—N1—Cu114.1 (5)C10—C11—C12119.0 (7)
C9—N1—Cu126.7 (5)C10—C11—H11120.5
C9—N2—C10124.8 (6)C12—C11—H11120.5
C9—N2—H2n117.6C13—C12—C11122.5 (7)
C10—N2—H2n117.6C13—C12—H12118.7
O1—C1—O2126.3 (7)C11—C12—H12118.7
O1—C1—C2117.4 (7)C12—C13—C14117.0 (7)
O2—C1—C2116.2 (7)C12—C13—C16123.6 (8)
C1—C2—H2A109.5C14—C13—C16119.4 (8)
C1—C2—H2B109.5C15—C14—C13120.8 (8)
H2A—C2—H2B109.5C15—C14—H14119.6
C1—C2—H2C109.5C13—C14—H14119.6
H2A—C2—H2C109.5C10—C15—C14121.1 (7)
H2B—C2—H2C109.5C10—C15—H15119.5
O3—C3—O4125.1 (7)C14—C15—H15119.5
O3—C3—C4118.2 (7)C13—C16—H16A109.5
O4—C3—C4116.7 (7)C13—C16—H16B109.5
C3—C4—H4A109.5H16A—C16—H16B109.5
C3—C4—H4B109.5C13—C16—H16C109.5
H4A—C4—H4B109.5H16A—C16—H16C109.5
C3—C4—H4C109.5H16B—C16—H16C109.5
O2i—Cu—O1—C12.3 (16)C9—N1—C5—C61.1 (12)
O3—Cu—O1—C182.8 (6)Cu—N1—C5—C6179.3 (7)
O4i—Cu—O1—C184.7 (6)N1—C5—C6—C70.7 (14)
N1—Cu—O1—C1180.0 (6)C5—C6—C7—C80.2 (14)
Cui—Cu—O1—C10.1 (6)C6—C7—C8—C90.7 (14)
O2i—Cu—O3—C384.9 (6)C5—N1—C9—N2177.6 (7)
O1—Cu—O3—C383.6 (6)Cu—N1—C9—N22.1 (9)
O4i—Cu—O3—C34.2 (15)C5—N1—C9—C80.5 (11)
N1—Cu—O3—C3178.4 (6)Cu—N1—C9—C8179.8 (5)
Cui—Cu—O3—C30.3 (6)C10—N2—C9—N1172.4 (7)
O2i—Cu—N1—C5125.9 (5)C10—N2—C9—C85.6 (13)
O1—Cu—N1—C554.6 (6)C7—C8—C9—N10.3 (12)
O3—Cu—N1—C5145.2 (5)C7—C8—C9—N2178.3 (8)
O4i—Cu—N1—C535.4 (6)C9—N2—C10—C15118.9 (9)
O2i—Cu—N1—C954.5 (6)C9—N2—C10—C1163.5 (11)
O1—Cu—N1—C9125.0 (6)C15—C10—C11—C120.3 (12)
O3—Cu—N1—C934.5 (6)N2—C10—C11—C12177.3 (7)
O4i—Cu—N1—C9145.0 (6)C10—C11—C12—C130.5 (12)
Cu—O1—C1—O21.2 (11)C11—C12—C13—C140.0 (12)
Cu—O1—C1—C2176.5 (6)C11—C12—C13—C16179.3 (8)
Cui—O2—C1—O11.9 (11)C12—C13—C14—C151.2 (12)
Cui—O2—C1—C2175.9 (6)C16—C13—C14—C15179.4 (8)
Cu—O3—C3—O41.0 (12)C11—C10—C15—C141.6 (13)
Cu—O3—C3—C4179.5 (6)N2—C10—C15—C14176.1 (8)
Cui—O4—C3—O32.1 (11)C13—C14—C15—C102.0 (14)
Cui—O4—C3—C4178.3 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O30.862.212.911 (8)139

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C12H12N2)2]
Mr731.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.6285 (9), 11.3242 (13), 18.566 (2)
β (°) 95.717 (2)
V3)1595.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.22 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.495, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
11607, 2806, 2203
Rint0.103
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.209, 1.08
No. of reflections2806
No. of parameters211
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0765P)2 + 11.519P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.31, 1.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu—O2i1.947 (5)Cu—O4i1.976 (5)
Cu—O11.950 (5)Cu—N12.205 (6)
Cu—O31.976 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O30.862.212.911 (8)139
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

We thank the University of Malaya (grant No. RG027/09AFR) for supporting this study.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1049–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, m1077–m1078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds