metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(acetato-κO)[4-(1H-pyrazol-3-yl)pyridine-κN1]zinc]-μ-acetato-κ2O:O′]

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and bThe People's Hospital of Xiangtan County, Xiangtan 411104, People's Republic of China
*Correspondence e-mail: tzd0517@163.com

(Received 20 August 2011; accepted 29 September 2011; online 12 October 2011)

In the title compound, [Zn(CH3CO2)2(C8H7N3)]n, the ZnII atom is coordinated by one N atom from a 4-(1H-pyrazol-3-yl)pyridine ligand and three O atoms from two bridging and one terminal acetate ligands, forming a distorted tetra­hedral geometry. The bridging acetate ligands link the Zn atoms into a chain along [001]. N—H⋯O hydrogen bonds and ππ inter­actions between the pyridine and pyrazole rings [centroid–centroid distance = 3.927 (3) Å] connect the chains into a layer parallel to (011).

Related literature

For background to complexes of 4-(1H-pyrazol-3-yl)pyridine, see: Davies et al. (2005[Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m485-m487.]). For the synthesis of the ligand, see: Davies et al. (2003[Davies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550-1553.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3O2)2(C8H7N3)]

  • Mr = 322.58

  • Monoclinic, P 21 /c

  • a = 16.371 (3) Å

  • b = 8.8526 (18) Å

  • c = 9.5041 (19) Å

  • β = 94.18 (3)°

  • V = 1373.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 293 K

  • 0.28 × 0.23 × 0.19 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.632, Tmax = 0.726

  • 11822 measured reflections

  • 2479 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.131

  • S = 1.06

  • 2479 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.026 (4)
Zn1—O1 1.942 (4)
Zn1—O3 1.958 (3)
Zn1—O4i 1.984 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2ii 0.86 1.93 2.769 (6) 163
Symmetry code: (ii) -x, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine derivatives are an important class of ligands for constructing metal–organic frameworks. 4-(1H-Pyrazol-3-yl)pyridine can be used as pyridine ligand in building coordination compounds (Davies et al., 2005). In the present paper, we report the synthesis and structure of the title compound.

As shown in Fig. 1, the ZnII atom exhibits a distorted tetrahedral coordination geometry, defined by one N atom from a 4-(1H-pyrazol-3-yl)pyridine ligand and three O atoms from two types of acetate ligands (Table 1). One acetate anion coordinates the Zn atom as a monodentate terminal ligand. The other acetate anion links the Zn atoms via two O atoms, forming a one-dimensional chain along [0 0 1] (Fig. 2). N—H···O hydrogen bonds (Table 2) and ππ interactions between the pyridine and pyrazole rings [centroid–centroid distance = 3.927 (3) Å] connect the chains into a layer parallel to (0 1 1) (Fig. 3).

Related literature top

For background to complexes of 4-(1H-pyrazol-3-yl)pyridine, see: Davies et al. (2005). For the synthesis of the ligand, see: Davies et al. (2003).

Experimental top

4-(1H-Pyrazol-3-yl)pyridine was prepared according to the published method of Davies et al. (2003). An aqueous solution (20 ml) containing zinc acetate (0.1 mmol, 22 mg) and 4-(1H-pyrazol-3-yl)pyridine (0.2 mmol, 29 mg) was stirred for a few minutes in air. Colorless crystals were obtained by allowing the solution to stand at room temperature for a few weeks.

Refinement top

H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, 3/2-y, 1/2+z.]
[Figure 2] Fig. 2. A view of the one-dimensional structure of the title compound along [0 0 1].
[Figure 3] Fig. 3. A view of the layer network. Hydrogen bonds are shown as dashed lines.
catena-Poly[[(acetato-κO)[4-(1H-pyrazol-3- yl)pyridine-κN1]zinc]-µ-acetato-κ2O:O'] top
Crystal data top
[Zn(C2H3O2)2(C8H7N3)]F(000) = 648
Mr = 322.58Dx = 1.560 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11614 reflections
a = 16.371 (3) Åθ = 3.2–27.6°
b = 8.8526 (18) ŵ = 1.80 mm1
c = 9.5041 (19) ÅT = 293 K
β = 94.18 (3)°Block, colourless
V = 1373.7 (5) Å30.28 × 0.23 × 0.19 mm
Z = 4
Data collection top
Rigaku SCXmini CCD
diffractometer
2479 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 25.2°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1919
Tmin = 0.632, Tmax = 0.726k = 1010
11822 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.063P)2 + 1.9274P]
where P = (Fo2 + 2Fc2)/3
2479 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Zn(C2H3O2)2(C8H7N3)]V = 1373.7 (5) Å3
Mr = 322.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.371 (3) ŵ = 1.80 mm1
b = 8.8526 (18) ÅT = 293 K
c = 9.5041 (19) Å0.28 × 0.23 × 0.19 mm
β = 94.18 (3)°
Data collection top
Rigaku SCXmini CCD
diffractometer
2479 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1957 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.726Rint = 0.068
11822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
2479 reflectionsΔρmin = 0.54 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.34131 (3)0.68665 (6)1.02084 (6)0.0343 (2)
N10.2233 (2)0.7526 (5)0.9820 (4)0.0348 (9)
C30.0573 (3)0.8142 (5)0.9123 (5)0.0325 (11)
C40.0820 (3)0.6924 (5)0.9969 (5)0.0362 (11)
H40.04300.62941.03250.043*
C50.1635 (3)0.6647 (6)1.0280 (5)0.0372 (12)
H50.17840.58131.08360.045*
C10.1992 (3)0.8734 (6)0.9045 (5)0.0403 (12)
H10.23930.93710.87360.048*
C20.1192 (3)0.9082 (5)0.8682 (5)0.0365 (12)
H20.10590.99380.81460.044*
N30.1561 (3)0.7919 (5)0.8372 (5)0.0491 (12)
H30.20250.74660.83930.059*
C60.0297 (3)0.8401 (5)0.8676 (5)0.0331 (11)
N20.0849 (3)0.7342 (5)0.8937 (5)0.0454 (11)
C70.0660 (3)0.9619 (6)0.7937 (5)0.0438 (13)
H70.04021.04800.76240.053*
C80.1469 (3)0.9277 (7)0.7774 (6)0.0495 (14)
H80.18800.98700.73330.059*
O30.4195 (2)0.8246 (4)0.9418 (3)0.0453 (9)
O10.3590 (2)0.4837 (4)0.9518 (4)0.0500 (10)
O20.2878 (2)0.3956 (4)1.1226 (4)0.0501 (10)
C90.3292 (3)0.3761 (6)1.0208 (6)0.0405 (12)
C100.3494 (5)0.2163 (7)0.9709 (8)0.072 (2)
C110.4183 (3)0.8446 (5)0.8100 (5)0.0334 (11)
C120.4840 (3)0.9438 (7)0.7551 (6)0.0578 (17)
O40.3643 (2)0.7841 (4)0.7269 (3)0.0373 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0330 (3)0.0415 (4)0.0283 (3)0.0030 (3)0.0026 (2)0.0012 (3)
N10.035 (2)0.039 (2)0.030 (2)0.004 (2)0.0011 (18)0.0030 (19)
C30.034 (3)0.034 (3)0.030 (3)0.003 (2)0.005 (2)0.005 (2)
C40.039 (3)0.034 (3)0.036 (3)0.004 (2)0.007 (2)0.008 (2)
C50.040 (3)0.041 (3)0.030 (3)0.003 (2)0.003 (2)0.006 (2)
C10.040 (3)0.041 (3)0.040 (3)0.010 (2)0.004 (2)0.003 (2)
C20.042 (3)0.032 (3)0.036 (3)0.001 (2)0.005 (2)0.007 (2)
N30.032 (2)0.053 (3)0.061 (3)0.001 (2)0.002 (2)0.007 (2)
C60.037 (3)0.031 (3)0.031 (3)0.000 (2)0.004 (2)0.000 (2)
N20.034 (3)0.039 (3)0.063 (3)0.004 (2)0.003 (2)0.008 (2)
C70.045 (3)0.043 (3)0.043 (3)0.002 (3)0.000 (2)0.010 (3)
C80.042 (3)0.054 (4)0.052 (3)0.009 (3)0.001 (3)0.010 (3)
O30.048 (2)0.061 (2)0.0267 (19)0.0171 (18)0.0011 (15)0.0038 (17)
O10.068 (3)0.038 (2)0.046 (2)0.0065 (19)0.0162 (19)0.0039 (17)
O20.044 (2)0.046 (2)0.062 (3)0.0055 (18)0.0122 (19)0.0023 (19)
C90.036 (3)0.042 (3)0.042 (3)0.004 (2)0.008 (2)0.001 (3)
C100.094 (5)0.037 (4)0.086 (5)0.005 (3)0.006 (4)0.013 (3)
C110.036 (3)0.035 (3)0.030 (3)0.002 (2)0.004 (2)0.001 (2)
C120.047 (3)0.075 (4)0.052 (4)0.023 (3)0.005 (3)0.015 (3)
O40.042 (2)0.044 (2)0.0258 (17)0.0044 (16)0.0040 (15)0.0009 (15)
Geometric parameters (Å, º) top
Zn1—N12.026 (4)N3—C81.344 (7)
Zn1—O11.942 (4)N3—N21.348 (6)
Zn1—O31.958 (3)N3—H30.8600
Zn1—O4i1.984 (3)C6—N21.338 (6)
N1—C11.341 (6)C6—C71.395 (7)
N1—C51.348 (6)C7—C81.356 (7)
C3—C41.387 (6)C7—H70.9300
C3—C21.398 (7)C8—H80.9300
C3—C61.475 (7)O3—C111.264 (6)
C4—C51.368 (7)O1—C91.274 (6)
C4—H40.9300O2—C91.233 (6)
C5—H50.9300C9—C101.536 (8)
C1—C21.365 (7)C11—O41.261 (5)
C1—H10.9300C11—C121.510 (7)
C2—H20.9300
O1—Zn1—O3109.25 (16)C3—C2—H2120.2
O1—Zn1—O4i115.59 (15)C8—N3—N2112.7 (4)
O3—Zn1—O4i102.40 (14)C8—N3—H3123.6
O1—Zn1—N1111.65 (17)N2—N3—H3123.6
O3—Zn1—N1113.05 (16)N2—C6—C7111.5 (4)
O4i—Zn1—N1104.60 (15)N2—C6—C3119.3 (4)
C1—N1—C5116.5 (4)C7—C6—C3129.2 (4)
C1—N1—Zn1124.6 (3)C6—N2—N3103.7 (4)
C5—N1—Zn1118.7 (3)C8—C7—C6105.1 (5)
C4—C3—C2116.7 (4)C8—C7—H7127.4
C4—C3—C6121.4 (4)C6—C7—H7127.4
C2—C3—C6121.8 (4)N3—C8—C7106.9 (5)
C5—C4—C3120.2 (4)N3—C8—H8126.5
C5—C4—H4119.9C7—C8—H8126.5
C3—C4—H4119.9C11—O3—Zn1120.3 (3)
N1—C5—C4123.1 (5)C9—O1—Zn1116.5 (3)
N1—C5—H5118.4O2—C9—O1123.5 (5)
C4—C5—H5118.4O2—C9—C10121.0 (5)
N1—C1—C2123.9 (5)O1—C9—C10115.5 (5)
N1—C1—H1118.1O4—C11—O3121.4 (4)
C2—C1—H1118.1O4—C11—C12121.0 (4)
C1—C2—C3119.5 (5)O3—C11—C12117.6 (4)
C1—C2—H2120.2C11—O4—Zn1ii129.6 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2iii0.861.932.769 (6)163
Symmetry code: (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C2H3O2)2(C8H7N3)]
Mr322.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.371 (3), 8.8526 (18), 9.5041 (19)
β (°) 94.18 (3)
V3)1373.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.28 × 0.23 × 0.19
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.632, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
11822, 2479, 1957
Rint0.068
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.131, 1.06
No. of reflections2479
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.54

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Zn1—N12.026 (4)Zn1—O31.958 (3)
Zn1—O11.942 (4)Zn1—O4i1.984 (3)
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2ii0.861.932.769 (6)163
Symmetry code: (ii) x, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Education Department of Hunan Province [Xiang Norimichi (2010).243] for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m485–m487.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDavies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550–1553.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds