metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tris­[silver(I)-μ-4,4′-bi­pyridine-κ2N:N′]] tris­­(perchlorate) di­hydrate]

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, Henan, People's Republic of China
*Correspondence e-mail: xiaominghu10@163.com

(Received 4 September 2011; accepted 29 September 2011; online 8 October 2011)

In the title compound, {[Ag3(C10H8N2)3](ClO4)3·2H2O}n, one of the AgI ions, one of the 4,4′-bipyridine (bipy) ligands and one of the perchlorate anions are each situated on a twofold rotation axis. Each AgI ion is coordinated by two N atoms from two bridging bipy ligands, forming chains along [101]. ππ inter­actions between the pyridine rings [centroid–centroid distances = 3.638 (8) and 3.688 (8) Å] connect the chains. Inter­molecular O—H⋯O hydrogen bonds link the uncoord­inated water mol­ecules and the perchlorate anions.

Related literature

For background to the network topologies and applications of coordination polymers, see: Du et al. (2007[Du, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984-3995.]); Hu et al. (2003[Hu, D.-H., Huang, W., Gou, S.-H., Fang, J.-L. & Fun, H.-K. (2003). Polyhedron, 22, 2661-2667.]); Lou et al. (2005[Lou, B.-Y., Wang, R.-H., Yuan, D.-Q., Wu, B.-L., Jiang, F.-L. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 971-974.]); Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Xiao et al. (2006[Xiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J. 12, 6528-6541.]). For O—H⋯O hydrogen bonds, see: Desiraju (2004[Desiraju, G. R. (2004). Hydrogen Bonding. Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658-665. New York: Marcel Dekker Inc.]). For ππ inter­actions, see: Zang et al. (2010[Zang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. 39, 8022-8032.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag3(C10H8N2)3](ClO4)3·2H2O

  • Mr = 1126.54

  • Monoclinic, C 2/c

  • a = 21.259 (2) Å

  • b = 15.7647 (17) Å

  • c = 20.949 (3) Å

  • β = 148.768 (5)°

  • V = 3640.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.715

  • 7095 measured reflections

  • 3145 independent reflections

  • 2229 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.170

  • S = 1.01

  • 3145 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 1.87 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O4i 0.85 2.21 3.060 (15) 173
O1W—H1WA⋯O3 0.85 2.44 2.99 (3) 123
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, supramolecular coordination assemblies have received much attention not only for their variety of architectures but also for potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). According to literature, 4,4'-bipyridine (bipy) is a good bridging ligand to construct coordination polymers, by which many supramolecular structures have been furnished (Hu et al., 2003; Lou et al., 2005; Xiao et al., 2006). The rational assembly of target metal-organic networks depends on the deliberate designs of ligands with adjustable connectivity and a reasonable choice of metal ions with specific coordination nature. Additionally, the use of auxiliary ligands is also an effective method for the construction of coordination polymers (Du et al., 2007). To further explore the influence of N-donor ligands on the properties and construction of coordination polymer, we undertake synthetic and structural studies on an Ag(I) complex based on bipy.

As shown in Fig. 1, the asymmetric unit of the title compound consists of one and a half AgI ions, one and a half bipy ligands, one water molecule and one and a half perchlorate anions. Each AgI ion is two-coordinated by two N atoms from two bipy ligands, forming two different one-dimensional chains. Ag2 atom has close contacts with the water molecule and perchlorate anions [Ag2···O1Wi = 2.872 (9), Ag2···O1ii = 2.84 (3), Ag···O6iii = 2.91 (1) Å. Symmetry codes: (i) 1/2+x, 1/2-y, 1/2+z; (ii) 3/2-x, 1/2-y, 1-z; (iii) 1-x, -y, 1-z]. The chains are further linked by ππ stacking interactions between different pyridine rings [centroid–centroid distances = 3.638 (8) and 3.688 (8) Å] (Zang et al., 2010), resulting in a two-dimensional supramolecular structure in the ac plane (Fig. 2). The two-dimensional supramolecular structures which have positive charge are linked by Ag···O contacts and electrostatic attraction with the perchlorate anions, forming a three-dimensional supramolecular structure. O—H···O hydrogen bonds (Table 1) (Desiraju, 2004) link the lattice water molecules and perchlorate anions (Fig. 3).

Related literature top

For background to the network topologies and applications of coordination polymers, see: Du et al. (2007); Hu et al. (2003); Lou et al. (2005); Maspoch et al. (2007); Ockwig et al. (2005); Xiao et al. (2006). For O—H···O hydrogen bonds, see: Desiraju (2004). For ππ interactions, see: Zang et al. (2010).

Experimental top

A mixture of AgClO4.6H2O (6.3 mg, 0.02 mmol), 4,4'-bipyridine (3.12 mg, 0.02 mmol) in a 10 ml mixed solution of H2O and ethanol (v/v = 1:3) and 5 drops of ammonia was sealed in a stainless-steel reactor with a Teflon liner and heated at 393 K for 72 h. A quantity of colorless single crystals were obtained after the mixture was cooled to room temperature at a rate of 10 K h-1.

Refinement top

H atoms on C atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The approximate positions of water H atoms were obtained from a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O). The highest residual electron density was found at 0.05 Å from Ag1 atom and the deepest hole at 0.89 Å from Ag2 atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) -x, y, -z-1/2; (ii) x+1, y, z+1; (iii) -x+1, y, -z+1/2.]
[Figure 2] Fig. 2. Two-dimensional supramolecular structure in the title compound. Dashed lines indicate ππ interactions.
[Figure 3] Fig. 3. Three-dimensional supramolecular structure of the title compound. Dashed lines indicate ππ interactions and hydrogen bonds.
catena-Poly[tris[silver(I)-µ-4,4'-bipyridine-κ2N:N'] tris(perchlorate) dihydrate] top
Crystal data top
[Ag3(C10H8N2)3](ClO4)3·2H2OF(000) = 2216
Mr = 1126.54Dx = 2.056 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2263 reflections
a = 21.259 (2) Åθ = 3.1–29.0°
b = 15.7647 (17) ŵ = 1.90 mm1
c = 20.949 (3) ÅT = 296 K
β = 148.768 (5)°Block, colorless
V = 3640.4 (9) Å30.21 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3145 independent reflections
Radiation source: fine-focus sealed tube2229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2525
Tmin = 0.692, Tmax = 0.715k = 1218
7095 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0911P)2]
where P = (Fo2 + 2Fc2)/3
3145 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 1.87 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Ag3(C10H8N2)3](ClO4)3·2H2OV = 3640.4 (9) Å3
Mr = 1126.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.259 (2) ŵ = 1.90 mm1
b = 15.7647 (17) ÅT = 296 K
c = 20.949 (3) Å0.21 × 0.20 × 0.19 mm
β = 148.768 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3145 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2229 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.715Rint = 0.037
7095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.01Δρmax = 1.87 e Å3
3145 reflectionsΔρmin = 1.07 e Å3
254 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.00000.45375 (5)0.25000.0566 (3)
Ag20.59795 (4)0.05250 (4)0.68999 (4)0.0558 (3)
O10.9612 (11)0.3396 (11)0.2576 (10)0.320 (11)
O21.0878 (12)0.2447 (7)0.3549 (11)0.225 (6)
O30.2999 (8)0.2382 (7)0.1888 (9)0.183 (5)
O40.4471 (17)0.2642 (6)0.3825 (14)0.279 (8)
O50.4822 (10)0.2063 (8)0.3197 (13)0.240 (6)
O60.3993 (6)0.1309 (6)0.3237 (6)0.147 (3)
O1W0.1272 (4)0.2966 (4)0.1401 (5)0.0789 (16)
H1WB0.07980.27510.07130.118*
H1WA0.20000.27880.20160.118*
N10.1878 (5)0.4546 (3)0.0596 (5)0.0465 (14)
N20.4098 (5)0.0531 (3)0.4983 (5)0.0404 (12)
N30.2117 (4)0.0492 (3)0.1224 (5)0.0410 (13)
C10.2488 (6)0.5264 (4)0.0009 (6)0.0390 (14)
H10.20810.57740.04240.047*
C20.3715 (6)0.5285 (4)0.1205 (6)0.0386 (14)
H20.41150.58030.15820.046*
C30.4347 (5)0.4539 (4)0.1856 (5)0.0318 (13)
C40.3680 (6)0.3788 (4)0.1220 (7)0.0522 (17)
H40.40530.32660.16120.063*
C50.2469 (6)0.3825 (5)0.0010 (6)0.0560 (19)
H50.20440.33190.04020.067*
C60.3549 (6)0.0171 (4)0.4321 (6)0.0480 (16)
H60.39890.06750.47060.058*
C70.2379 (5)0.0197 (4)0.3112 (5)0.0459 (16)
H70.20510.07030.26790.055*
C80.1676 (5)0.0518 (3)0.2521 (5)0.0295 (13)
C90.2230 (6)0.1252 (4)0.3215 (6)0.0461 (16)
H90.17920.17550.28620.055*
C100.3441 (6)0.1232 (4)0.4441 (6)0.0524 (17)
H100.38050.17290.49000.063*
C110.0359 (5)0.0509 (3)0.1213 (5)0.0279 (12)
C120.0267 (5)0.0238 (4)0.0584 (5)0.0318 (13)
H120.01350.07540.09710.038*
C130.1494 (5)0.0225 (4)0.0625 (5)0.0382 (14)
H130.18980.07370.10320.046*
C140.1510 (6)0.1215 (4)0.0627 (6)0.0534 (18)
H140.19260.17250.10330.064*
C150.0293 (5)0.1237 (4)0.0570 (6)0.0490 (17)
H150.00940.17590.09480.059*
Cl11.00000.28764 (14)0.25000.0493 (6)
Cl20.41235 (16)0.21081 (11)0.30907 (16)0.0539 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0280 (4)0.0644 (6)0.0340 (5)0.0000.0197 (4)0.000
Ag20.0251 (3)0.0706 (5)0.0256 (3)0.0006 (2)0.0144 (3)0.0007 (2)
O10.233 (13)0.47 (2)0.132 (8)0.233 (16)0.137 (10)0.076 (12)
O20.310 (15)0.146 (9)0.195 (10)0.143 (9)0.212 (11)0.116 (7)
O30.136 (6)0.223 (12)0.165 (8)0.107 (8)0.125 (7)0.141 (8)
O40.51 (2)0.090 (7)0.279 (15)0.072 (11)0.343 (19)0.066 (9)
O50.218 (9)0.225 (13)0.388 (15)0.090 (10)0.277 (12)0.107 (12)
O60.101 (5)0.110 (7)0.090 (5)0.024 (5)0.060 (5)0.013 (4)
O1W0.069 (3)0.069 (4)0.076 (4)0.002 (3)0.058 (3)0.003 (3)
N10.033 (3)0.048 (4)0.035 (3)0.002 (2)0.025 (3)0.002 (3)
N20.027 (3)0.040 (3)0.032 (3)0.000 (2)0.022 (3)0.003 (2)
N30.017 (2)0.051 (4)0.020 (3)0.001 (2)0.010 (2)0.006 (2)
C10.037 (3)0.034 (3)0.039 (3)0.001 (3)0.032 (3)0.003 (3)
C20.042 (3)0.030 (3)0.038 (3)0.001 (3)0.033 (3)0.001 (3)
C30.027 (3)0.041 (4)0.030 (3)0.000 (2)0.024 (3)0.000 (3)
C40.040 (3)0.031 (4)0.051 (4)0.000 (3)0.033 (3)0.001 (3)
C50.043 (4)0.042 (4)0.043 (4)0.006 (4)0.030 (4)0.007 (4)
C60.035 (3)0.043 (4)0.034 (3)0.012 (3)0.024 (3)0.004 (3)
C70.032 (3)0.043 (4)0.027 (3)0.003 (3)0.019 (3)0.006 (3)
C80.023 (3)0.033 (3)0.023 (3)0.002 (2)0.018 (3)0.000 (2)
C90.038 (3)0.023 (3)0.039 (4)0.007 (3)0.027 (3)0.001 (3)
C100.034 (3)0.037 (4)0.037 (4)0.009 (3)0.022 (3)0.006 (3)
C110.022 (3)0.028 (3)0.019 (3)0.004 (2)0.015 (3)0.002 (2)
C120.024 (3)0.031 (3)0.029 (3)0.005 (2)0.020 (3)0.003 (3)
C130.026 (3)0.041 (3)0.022 (3)0.004 (3)0.017 (3)0.007 (3)
C140.029 (3)0.035 (4)0.027 (3)0.004 (3)0.013 (3)0.010 (3)
C150.036 (3)0.031 (4)0.029 (3)0.004 (3)0.020 (3)0.005 (3)
Cl10.0637 (15)0.0265 (11)0.0578 (15)0.0000.0520 (14)0.000
Cl20.0567 (11)0.0389 (9)0.0568 (11)0.0052 (8)0.0470 (10)0.0060 (8)
Geometric parameters (Å, º) top
Ag1—N12.149 (6)C3—C41.400 (8)
Ag1—N1i2.149 (6)C3—C3iii1.475 (12)
Ag2—N3ii2.151 (5)C4—C51.378 (10)
Ag2—N22.158 (6)C4—H40.9300
O1—Cl11.27 (3)C5—H50.9300
O2—Cl11.325 (9)C6—C71.353 (8)
O3—Cl21.396 (8)C6—H60.9300
O4—Cl21.295 (10)C7—C81.368 (8)
O5—Cl21.30 (3)C7—H70.9300
O6—Cl21.379 (8)C8—C91.383 (8)
O1W—H1WB0.8500C8—C111.492 (8)
O1W—H1WA0.8500C9—C101.385 (9)
N1—C11.323 (8)C9—H90.9300
N1—C51.324 (9)C10—H100.9300
N2—C61.320 (8)C11—C151.364 (8)
N2—C101.323 (8)C11—C121.377 (8)
N3—C131.328 (8)C12—C131.386 (7)
N3—C141.329 (8)C12—H120.9300
C1—C21.389 (9)C13—H130.9300
C1—H10.9300C14—C151.374 (8)
C2—C31.383 (8)C14—H140.9300
C2—H20.9300C15—H150.9300
N1—Ag1—N1i179.3 (3)C9—C8—C11120.8 (5)
N3ii—Ag2—N2176.36 (19)C8—C9—C10119.5 (6)
H1WB—O1W—H1WA115.0C8—C9—H9120.3
C1—N1—C5118.1 (6)C10—C9—H9120.3
C1—N1—Ag1121.3 (4)N2—C10—C9122.4 (6)
C5—N1—Ag1120.5 (5)N2—C10—H10118.8
C6—N2—C10117.6 (6)C9—C10—H10118.8
C6—N2—Ag2121.2 (4)C15—C11—C12116.1 (6)
C10—N2—Ag2121.1 (4)C15—C11—C8122.1 (5)
C13—N3—C14117.3 (5)C12—C11—C8121.7 (5)
C13—N3—Ag2iv123.0 (4)C11—C12—C13120.3 (6)
C14—N3—Ag2iv119.7 (4)C11—C12—H12119.9
N1—C1—C2122.4 (6)C13—C12—H12119.9
N1—C1—H1118.8N3—C13—C12122.5 (6)
C2—C1—H1118.8N3—C13—H13118.7
C3—C2—C1120.4 (6)C12—C13—H13118.7
C3—C2—H2119.8N3—C14—C15122.5 (6)
C1—C2—H2119.8N3—C14—H14118.8
C2—C3—C4116.2 (6)C15—C14—H14118.8
C2—C3—C3iii121.7 (4)C11—C15—C14121.2 (6)
C4—C3—C3iii122.1 (4)C11—C15—H15119.4
C5—C4—C3119.6 (6)C14—C15—H15119.4
C5—C4—H4120.2O1v—Cl1—O199.3 (17)
C3—C4—H4120.2O1v—Cl1—O2v105.5 (7)
N1—C5—C4123.3 (6)O1—Cl1—O2v113.2 (9)
N1—C5—H5118.4O1v—Cl1—O2113.2 (9)
C4—C5—H5118.4O1—Cl1—O2105.5 (7)
N2—C6—C7123.4 (6)O2v—Cl1—O2118.6 (12)
N2—C6—H6118.3O4—Cl2—O5115.0 (10)
C7—C6—H6118.3O4—Cl2—O6110.4 (7)
C6—C7—C8120.5 (6)O5—Cl2—O6109.2 (6)
C6—C7—H7119.8O4—Cl2—O3107.5 (9)
C8—C7—H7119.8O5—Cl2—O3105.6 (7)
C7—C8—C9116.7 (6)O6—Cl2—O3108.9 (5)
C7—C8—C11122.5 (5)
C5—N1—C1—C20.5 (10)C6—N2—C10—C92.1 (10)
Ag1—N1—C1—C2177.1 (4)Ag2—N2—C10—C9179.5 (5)
N1—C1—C2—C30.8 (9)C8—C9—C10—N20.1 (10)
C1—C2—C3—C40.2 (9)C7—C8—C11—C15169.4 (6)
C1—C2—C3—C3iii179.6 (6)C9—C8—C11—C1514.1 (9)
C2—C3—C4—C50.8 (10)C7—C8—C11—C1210.0 (9)
C3iii—C3—C4—C5178.7 (7)C9—C8—C11—C12166.5 (5)
C1—N1—C5—C40.5 (11)C15—C11—C12—C131.4 (8)
Ag1—N1—C5—C4178.1 (6)C8—C11—C12—C13179.1 (5)
C3—C4—C5—N11.1 (11)C14—N3—C13—C121.3 (9)
C10—N2—C6—C74.0 (10)Ag2iv—N3—C13—C12179.9 (4)
Ag2—N2—C6—C7178.7 (5)C11—C12—C13—N30.1 (9)
N2—C6—C7—C83.6 (11)C13—N3—C14—C151.0 (10)
C6—C7—C8—C91.2 (9)Ag2iv—N3—C14—C15179.7 (5)
C6—C7—C8—C11175.4 (6)C12—C11—C15—C141.7 (9)
C7—C8—C9—C100.5 (9)C8—C11—C15—C14178.8 (6)
C11—C8—C9—C10177.2 (6)N3—C14—C15—C110.5 (11)
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z+1/2; (iv) x1, y, z1; (v) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4vi0.852.213.060 (15)173
O1W—H1WA···O30.852.442.99 (3)123
Symmetry code: (vi) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ag3(C10H8N2)3](ClO4)3·2H2O
Mr1126.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)21.259 (2), 15.7647 (17), 20.949 (3)
β (°) 148.768 (5)
V3)3640.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.692, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
7095, 3145, 2229
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.170, 1.01
No. of reflections3145
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.87, 1.07

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.852.213.060 (15)173
O1W—H1WA···O30.852.442.99 (3)123
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

We thank the Science Research Foundation for High-Level Talents of Pingdingshan University (No. 2006047) for support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2004). Hydrogen Bonding. Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.  Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984–3995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, D.-H., Huang, W., Gou, S.-H., Fang, J.-L. & Fun, H.-K. (2003). Polyhedron, 22, 2661–2667.  Web of Science CSD CrossRef CAS Google Scholar
First citationLou, B.-Y., Wang, R.-H., Yuan, D.-Q., Wu, B.-L., Jiang, F.-L. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 971–974.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J. 12, 6528–6541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. 39, 8022–8032.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds