metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1596-m1597

fac-Tris(pyridine-2-carboxyl­ato-κ2N,O)cobalt(III)

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, bDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland, and cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Boulevard 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net

(Received 11 October 2011; accepted 19 October 2011; online 29 October 2011)

In the title compound, [Co(C6H4NO2)3], the CoIII ion lies on a threefold rotation axis and is in a distorted octa­hedral environment defined by three N and three O donor atoms from three fac-disposed pyridine-2-carboxyl­ate ligands. The ligands are coordinated in a chelate fashion, forming three five-membered rings. In the crystal, translationally related complex molecules are organized into columns along [001] via C—H⋯O hydrogen bonds.

Related literature

For the use of hydroxamate ligands in the synthesis of polynuclear compounds, see: Dobosz et al. (1999[Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743-749.]); Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]). For hydrolytic destruction of hydroxamate ligands upon complex formation, see: Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]). For related structures, see: Fritsky et al. (2001[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221-1231.]); Fu & Wang (2005[Fu, A.-Y. & Wang, D.-Q. (2005). Acta Cryst. E61, m481-m482.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]); Pelizzi & Pelizzi (1981[Pelizzi, C. & Pelizzi, G. (1981). Transition Met. Chem. 6, 315-316.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Wörl, Fritsky et al. (2005[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759-765.]); Wörl, Pritzkow et al. (2005[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27-29.]). For the synthesis of pyridine-2-hydroxamic acid, see: Hynes (1970[Hynes, J. B. (1970). J. Med. Chem. 13, 1235-1237.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H4NO2)3]

  • Mr = 425.24

  • Hexagonal, P 6

  • a = 12.8617 (12) Å

  • c = 6.2122 (9) Å

  • V = 890.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 120 K

  • 0.23 × 0.08 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.800, Tmax = 0.970

  • 5635 measured reflections

  • 978 independent reflections

  • 893 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.197

  • S = 1.16

  • 978 reflections

  • 86 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 400 Friedel pairs

  • Flack parameter: −0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.60 3.212 (14) 123
Symmetry code: (i) x-y+1, x, z-1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxamic groups and their derivatives are often used in syntheses of polynuclear metal complexes (Dobosz et al., 1999; Fritsky et al., 1998; Sachse et al., 2008). However, functionalized hydroxamate ligands having additional donor functions often undergo hydrolytic destruction when complex formation with 3d-metal ions takes place (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000). As a result, a carboxylic group is formed. The title compound was obtained as a result of hydrolytic decomposition of pyridine-2-hydroxamic acid during the reaction of complex formation with cobalt(II) perchlorate.

In the title compound, the CoIII ion lies on a threefold rotation axis and is in a distorted octahedral environment of three N and three O donor atoms from three pyridine-2-carboxylate ligands (Fig. 1). Unlike in the case of earlier reported tris(pyridine-2-carboxylato)cobalt(III) monohydrate, in which the realization of mer-isomer is observed, in the title complex three pyridine-2-carboxylate ligands are disposed in a fac-fashion (Fu & Wang, 2005; Pelizzi & Pelizzi, 1981). The ligands are coordinated in a chelate mode, forming three five-membered rings. The Co—N and Co—O bond lengths are consistent with the values typically quoted for the octahedral cobalt(III) complexes with N,O-mixed donor ligands (Mokhir et al., 2002; Sliva et al., 1997). The C—O bond lengths in the deprotonated carboxylate groups of the ligands differ significantly [1.232 (14) and 1.339 (15) Å], which is typical for monodentately coordinated carboxylates (Wörl, Fritsky et al., 2005; Wörl, Pritzkow et al., 2005). The C—C and C—N bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2001; Kovbasyuk et al., 2004; Krämer & Fritsky, 2000; Moroz et al., 2010).

In the crystal, the translational complex molecules are organized into columns along the c axis (Fig. 2). The neighboring molecules are united by C—H···O hydrogen bonds (Table 1).

Related literature top

For the use of hydroxamate ligands in the synthesis of polynuclear compounds, see: Dobosz et al. (1999); Fritsky et al. (1998); Sachse et al. (2008). For hydrolytic destruction of hydroxamate ligands upon complex formation, see: Świątek-Kozłowska et al. (2000). For related structures, see: Fritsky et al. (2001); Fu & Wang (2005); Kovbasyuk et al. (2004); Krämer & Fritsky (2000); Mokhir et al. (2002); Moroz et al. (2010); Pelizzi & Pelizzi (1981); Sliva et al. (1997); Wörl, Fritsky et al. (2005); Wörl, Pritzkow et al. (2005). For the synthesis of pyridine-2-hydroxamic acid, see: Hynes (1970).

Experimental top

Cobalt(II) perchlorate hexahydrate (0.0365 g, 0.1 mmol) was dissolved in water (3 ml) and mixed with a solution of pyridine-2-hydroxamic acid (0.0414 g, 0.3 mmol) (Hynes, 1970) in methanol (3 ml). The resulting clear red solution was set aside for crystallization by slow diffusion of diethyl ether into the formed solution. The pink crystals formed in 5–7 days were filtered off, washed with diethyl ether and air-dried (yield: 83%).

Refinement top

The final structure refinement was performed by using a twin law (-1 -1 0 0 1 0 0 0 -1) with the final BASF parameter refining to 0.80178. H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) -x+y, 1-x, z; (ii) 1-y, 1+x-y, z.]
[Figure 2] Fig. 2. A packing diagram of the title compound. H atoms have been omitted for clarity.
fac-Tris(pyridine-2-carboxylato-κ2N,O)cobalt(III) top
Crystal data top
[Co(C6H4NO2)3]Dx = 1.587 Mg m3
Mr = 425.24Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6Cell parameters from 713 reflections
Hall symbol: P 6θ = 3.2–24.5°
a = 12.8617 (12) ŵ = 1.01 mm1
c = 6.2122 (9) ÅT = 120 K
V = 890.0 (2) Å3Block, pink
Z = 20.23 × 0.08 × 0.03 mm
F(000) = 432
Data collection top
Nonius KappaCCD
diffractometer
978 independent reflections
Radiation source: fine-focus sealed tube893 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.043
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ and ω scans with κ offseth = 1515
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1515
Tmin = 0.800, Tmax = 0.970l = 77
5635 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.1316P)2 + 0.9442P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
978 reflectionsΔρmax = 1.05 e Å3
86 parametersΔρmin = 0.59 e Å3
1 restraintAbsolute structure: Flack (1983), 400 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
[Co(C6H4NO2)3]Z = 2
Mr = 425.24Mo Kα radiation
Hexagonal, P6µ = 1.01 mm1
a = 12.8617 (12) ÅT = 120 K
c = 6.2122 (9) Å0.23 × 0.08 × 0.03 mm
V = 890.0 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
978 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
893 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.970Rint = 0.043
5635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.197Δρmax = 1.05 e Å3
S = 1.16Δρmin = 0.59 e Å3
978 reflectionsAbsolute structure: Flack (1983), 400 Friedel pairs
86 parametersAbsolute structure parameter: 0.02 (7)
1 restraint
Special details top

Experimental. The final structural refinement was performed by using the twin law -1 -1 0 0 1 0 0 0 -1 with the final BASF parameter refining to 0.80178.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.33330.66670.3408 (2)0.0379 (5)
O10.4550 (7)0.7860 (7)0.5147 (11)0.0514 (18)
O20.6490 (9)0.8907 (8)0.5627 (16)0.083 (3)
N10.4619 (6)0.6785 (6)0.1705 (12)0.0332 (15)
C10.4622 (10)0.6303 (9)0.0009 (17)0.051 (2)
H10.38750.57560.06560.061*
C20.5687 (9)0.6533 (9)0.1037 (17)0.050 (2)
H20.56590.61450.23550.061*
C30.6747 (10)0.7308 (9)0.0138 (18)0.052 (2)
H30.74830.74800.07950.062*
C40.6729 (9)0.7796 (9)0.159 (2)0.052 (3)
H40.74690.83580.22410.062*
C50.5690 (8)0.7548 (9)0.2577 (18)0.048 (2)
C60.5660 (11)0.8159 (9)0.4512 (18)0.057 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0513 (7)0.0513 (7)0.0111 (8)0.0256 (3)0.0000.000
O10.067 (4)0.066 (4)0.018 (4)0.031 (4)0.007 (3)0.008 (3)
O20.105 (7)0.067 (5)0.054 (6)0.027 (4)0.036 (5)0.004 (4)
N10.045 (4)0.047 (4)0.014 (3)0.028 (3)0.001 (3)0.007 (3)
C10.065 (5)0.056 (5)0.034 (5)0.031 (4)0.006 (4)0.008 (4)
C20.061 (5)0.058 (5)0.041 (6)0.036 (5)0.010 (4)0.006 (4)
C30.060 (6)0.059 (6)0.046 (6)0.038 (5)0.014 (5)0.016 (5)
C40.042 (5)0.067 (6)0.055 (7)0.033 (4)0.012 (5)0.023 (6)
C50.048 (5)0.057 (5)0.042 (6)0.029 (4)0.005 (4)0.021 (5)
C60.071 (7)0.052 (6)0.036 (6)0.021 (5)0.027 (6)0.010 (5)
Geometric parameters (Å, º) top
Co1—O1i1.889 (7)C1—C21.402 (14)
Co1—O11.889 (7)C1—H10.9500
Co1—O1ii1.889 (7)C2—C31.344 (16)
Co1—N1i1.904 (7)C2—H20.9500
Co1—N1ii1.904 (7)C3—C41.251 (15)
Co1—N11.904 (7)C3—H30.9500
O1—C61.339 (15)C4—C51.354 (14)
O2—C61.232 (14)C4—H40.9500
N1—C11.233 (14)C5—C61.447 (15)
N1—C51.343 (12)
O1i—Co1—O190.6 (3)N1—C1—C2122.4 (10)
O1i—Co1—O1ii90.6 (3)N1—C1—H1118.8
O1—Co1—O1ii90.6 (3)C2—C1—H1118.8
O1i—Co1—N1i85.4 (3)C3—C2—C1119.3 (10)
O1—Co1—N1i92.1 (2)C3—C2—H2120.4
O1ii—Co1—N1i175.1 (3)C1—C2—H2120.4
O1i—Co1—N1ii92.1 (2)C4—C3—C2117.6 (10)
O1—Co1—N1ii175.1 (3)C4—C3—H3121.2
O1ii—Co1—N1ii85.4 (3)C2—C3—H3121.2
N1i—Co1—N1ii92.1 (3)C3—C4—C5122.2 (11)
O1i—Co1—N1175.1 (3)C3—C4—H4118.9
O1—Co1—N185.4 (3)C5—C4—H4118.9
O1ii—Co1—N192.1 (2)N1—C5—C4121.4 (11)
N1i—Co1—N192.1 (3)N1—C5—C6115.8 (10)
N1ii—Co1—N192.1 (3)C4—C5—C6122.5 (11)
C6—O1—Co1113.3 (7)O2—C6—O1116.2 (13)
C1—N1—C5117.1 (9)O2—C6—C5130.0 (13)
C1—N1—Co1131.3 (7)O1—C6—C5113.8 (10)
C5—N1—Co1111.5 (7)
O1i—Co1—O1—C6179.0 (6)C1—C2—C3—C40.2 (14)
O1ii—Co1—O1—C688.4 (8)C2—C3—C4—C51.2 (15)
N1—Co1—O1—C63.7 (7)C1—N1—C5—C41.3 (13)
O1—Co1—N1—C1175.4 (8)Co1—N1—C5—C4177.9 (7)
O1ii—Co1—N1—C194.2 (9)C1—N1—C5—C6176.1 (7)
N1i—Co1—N1—C183.4 (7)Co1—N1—C5—C63.1 (8)
N1ii—Co1—N1—C18.8 (8)C3—C4—C5—N11.8 (14)
O1—Co1—N1—C53.7 (6)C3—C4—C5—C6176.3 (8)
O1ii—Co1—N1—C586.7 (6)Co1—O1—C6—O2177.8 (7)
N1i—Co1—N1—C595.7 (7)Co1—O1—C6—C52.9 (9)
N1ii—Co1—N1—C5172.1 (6)N1—C5—C6—O2179.0 (10)
C5—N1—C1—C20.3 (13)C4—C5—C6—O24.2 (13)
Co1—N1—C1—C2178.7 (6)N1—C5—C6—O10.2 (9)
N1—C1—C2—C30.2 (14)C4—C5—C6—O1174.9 (9)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2iii0.952.603.212 (14)123
Symmetry code: (iii) xy+1, x, z1.

Experimental details

Crystal data
Chemical formula[Co(C6H4NO2)3]
Mr425.24
Crystal system, space groupHexagonal, P6
Temperature (K)120
a, c (Å)12.8617 (12), 6.2122 (9)
V3)890.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.23 × 0.08 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.800, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
5635, 978, 893
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.197, 1.16
No. of reflections978
No. of parameters86
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.59
Absolute structureFlack (1983), 400 Friedel pairs
Absolute structure parameter0.02 (7)

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.603.212 (14)123
Symmetry code: (i) xy+1, x, z1.
 

Acknowledgements

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, A.-Y. & Wang, D.-Q. (2005). Acta Cryst. E61, m481–m482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHynes, J. B. (1970). J. Med. Chem. 13, 1235–1237.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPelizzi, C. & Pelizzi, G. (1981). Transition Met. Chem. 6, 315–316.  CSD CrossRef CAS Web of Science Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1596-m1597
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds