metal-organic compounds
fac-Tris(pyridine-2-carboxylato-κ2N,O)cobalt(III)
aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, bDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland, and cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Boulevard 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net
In the title compound, [Co(C6H4NO2)3], the CoIII ion lies on a threefold rotation axis and is in a distorted octahedral environment defined by three N and three O donor atoms from three fac-disposed pyridine-2-carboxylate ligands. The ligands are coordinated in a chelate fashion, forming three five-membered rings. In the crystal, translationally related complex molecules are organized into columns along [001] via C—H⋯O hydrogen bonds.
Related literature
For the use of hydroxamate ligands in the synthesis of polynuclear compounds, see: Dobosz et al. (1999); Fritsky et al. (1998); Sachse et al. (2008). For hydrolytic destruction of hydroxamate ligands upon complex formation, see: Świątek-Kozłowska et al. (2000). For related structures, see: Fritsky et al. (2001); Fu & Wang (2005); Kovbasyuk et al. (2004); Krämer & Fritsky (2000); Mokhir et al. (2002); Moroz et al. (2010); Pelizzi & Pelizzi (1981); Sliva et al. (1997); Wörl, Fritsky et al. (2005); Wörl, Pritzkow et al. (2005). For the synthesis of pyridine-2-hydroxamic acid, see: Hynes (1970).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811043303/hy2479sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811043303/hy2479Isup2.hkl
Cobalt(II) perchlorate hexahydrate (0.0365 g, 0.1 mmol) was dissolved in water (3 ml) and mixed with a solution of pyridine-2-hydroxamic acid (0.0414 g, 0.3 mmol) (Hynes, 1970) in methanol (3 ml). The resulting clear red solution was set aside for crystallization by slow diffusion of diethyl ether into the formed solution. The pink crystals formed in 5–7 days were filtered off, washed with diethyl ether and air-dried (yield: 83%).
The final structure
was performed by using a (-1 -1 0 0 1 0 0 0 -1) with the final BASF parameter refining to 0.80178. H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).Data collection: COLLECT (Nonius, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Co(C6H4NO2)3] | Dx = 1.587 Mg m−3 |
Mr = 425.24 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6 | Cell parameters from 713 reflections |
Hall symbol: P 6 | θ = 3.2–24.5° |
a = 12.8617 (12) Å | µ = 1.01 mm−1 |
c = 6.2122 (9) Å | T = 120 K |
V = 890.0 (2) Å3 | Block, pink |
Z = 2 | 0.23 × 0.08 × 0.03 mm |
F(000) = 432 |
Nonius KappaCCD diffractometer | 978 independent reflections |
Radiation source: fine-focus sealed tube | 893 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.043 |
Detector resolution: 9 pixels mm-1 | θmax = 25.0°, θmin = 3.2° |
ϕ and ω scans with κ offset | h = −15→15 |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | k = −15→15 |
Tmin = 0.800, Tmax = 0.970 | l = −7→7 |
5635 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.197 | w = 1/[σ2(Fo2) + (0.1316P)2 + 0.9442P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
978 reflections | Δρmax = 1.05 e Å−3 |
86 parameters | Δρmin = −0.59 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 400 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (7) |
[Co(C6H4NO2)3] | Z = 2 |
Mr = 425.24 | Mo Kα radiation |
Hexagonal, P6 | µ = 1.01 mm−1 |
a = 12.8617 (12) Å | T = 120 K |
c = 6.2122 (9) Å | 0.23 × 0.08 × 0.03 mm |
V = 890.0 (2) Å3 |
Nonius KappaCCD diffractometer | 978 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 893 reflections with I > 2σ(I) |
Tmin = 0.800, Tmax = 0.970 | Rint = 0.043 |
5635 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.197 | Δρmax = 1.05 e Å−3 |
S = 1.16 | Δρmin = −0.59 e Å−3 |
978 reflections | Absolute structure: Flack (1983), 400 Friedel pairs |
86 parameters | Absolute structure parameter: −0.02 (7) |
1 restraint |
Experimental. The final structural refinement was performed by using the twin law -1 -1 0 0 1 0 0 0 -1 with the final BASF parameter refining to 0.80178. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.3333 | 0.6667 | 0.3408 (2) | 0.0379 (5) | |
O1 | 0.4550 (7) | 0.7860 (7) | 0.5147 (11) | 0.0514 (18) | |
O2 | 0.6490 (9) | 0.8907 (8) | 0.5627 (16) | 0.083 (3) | |
N1 | 0.4619 (6) | 0.6785 (6) | 0.1705 (12) | 0.0332 (15) | |
C1 | 0.4622 (10) | 0.6303 (9) | −0.0009 (17) | 0.051 (2) | |
H1 | 0.3875 | 0.5756 | −0.0656 | 0.061* | |
C2 | 0.5687 (9) | 0.6533 (9) | −0.1037 (17) | 0.050 (2) | |
H2 | 0.5659 | 0.6145 | −0.2355 | 0.061* | |
C3 | 0.6747 (10) | 0.7308 (9) | −0.0138 (18) | 0.052 (2) | |
H3 | 0.7483 | 0.7480 | −0.0795 | 0.062* | |
C4 | 0.6729 (9) | 0.7796 (9) | 0.159 (2) | 0.052 (3) | |
H4 | 0.7469 | 0.8358 | 0.2241 | 0.062* | |
C5 | 0.5690 (8) | 0.7548 (9) | 0.2577 (18) | 0.048 (2) | |
C6 | 0.5660 (11) | 0.8159 (9) | 0.4512 (18) | 0.057 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0513 (7) | 0.0513 (7) | 0.0111 (8) | 0.0256 (3) | 0.000 | 0.000 |
O1 | 0.067 (4) | 0.066 (4) | 0.018 (4) | 0.031 (4) | −0.007 (3) | −0.008 (3) |
O2 | 0.105 (7) | 0.067 (5) | 0.054 (6) | 0.027 (4) | −0.036 (5) | 0.004 (4) |
N1 | 0.045 (4) | 0.047 (4) | 0.014 (3) | 0.028 (3) | −0.001 (3) | 0.007 (3) |
C1 | 0.065 (5) | 0.056 (5) | 0.034 (5) | 0.031 (4) | 0.006 (4) | 0.008 (4) |
C2 | 0.061 (5) | 0.058 (5) | 0.041 (6) | 0.036 (5) | 0.010 (4) | 0.006 (4) |
C3 | 0.060 (6) | 0.059 (6) | 0.046 (6) | 0.038 (5) | 0.014 (5) | 0.016 (5) |
C4 | 0.042 (5) | 0.067 (6) | 0.055 (7) | 0.033 (4) | 0.012 (5) | 0.023 (6) |
C5 | 0.048 (5) | 0.057 (5) | 0.042 (6) | 0.029 (4) | −0.005 (4) | 0.021 (5) |
C6 | 0.071 (7) | 0.052 (6) | 0.036 (6) | 0.021 (5) | −0.027 (6) | 0.010 (5) |
Co1—O1i | 1.889 (7) | C1—C2 | 1.402 (14) |
Co1—O1 | 1.889 (7) | C1—H1 | 0.9500 |
Co1—O1ii | 1.889 (7) | C2—C3 | 1.344 (16) |
Co1—N1i | 1.904 (7) | C2—H2 | 0.9500 |
Co1—N1ii | 1.904 (7) | C3—C4 | 1.251 (15) |
Co1—N1 | 1.904 (7) | C3—H3 | 0.9500 |
O1—C6 | 1.339 (15) | C4—C5 | 1.354 (14) |
O2—C6 | 1.232 (14) | C4—H4 | 0.9500 |
N1—C1 | 1.233 (14) | C5—C6 | 1.447 (15) |
N1—C5 | 1.343 (12) | ||
O1i—Co1—O1 | 90.6 (3) | N1—C1—C2 | 122.4 (10) |
O1i—Co1—O1ii | 90.6 (3) | N1—C1—H1 | 118.8 |
O1—Co1—O1ii | 90.6 (3) | C2—C1—H1 | 118.8 |
O1i—Co1—N1i | 85.4 (3) | C3—C2—C1 | 119.3 (10) |
O1—Co1—N1i | 92.1 (2) | C3—C2—H2 | 120.4 |
O1ii—Co1—N1i | 175.1 (3) | C1—C2—H2 | 120.4 |
O1i—Co1—N1ii | 92.1 (2) | C4—C3—C2 | 117.6 (10) |
O1—Co1—N1ii | 175.1 (3) | C4—C3—H3 | 121.2 |
O1ii—Co1—N1ii | 85.4 (3) | C2—C3—H3 | 121.2 |
N1i—Co1—N1ii | 92.1 (3) | C3—C4—C5 | 122.2 (11) |
O1i—Co1—N1 | 175.1 (3) | C3—C4—H4 | 118.9 |
O1—Co1—N1 | 85.4 (3) | C5—C4—H4 | 118.9 |
O1ii—Co1—N1 | 92.1 (2) | N1—C5—C4 | 121.4 (11) |
N1i—Co1—N1 | 92.1 (3) | N1—C5—C6 | 115.8 (10) |
N1ii—Co1—N1 | 92.1 (3) | C4—C5—C6 | 122.5 (11) |
C6—O1—Co1 | 113.3 (7) | O2—C6—O1 | 116.2 (13) |
C1—N1—C5 | 117.1 (9) | O2—C6—C5 | 130.0 (13) |
C1—N1—Co1 | 131.3 (7) | O1—C6—C5 | 113.8 (10) |
C5—N1—Co1 | 111.5 (7) | ||
O1i—Co1—O1—C6 | 179.0 (6) | C1—C2—C3—C4 | −0.2 (14) |
O1ii—Co1—O1—C6 | 88.4 (8) | C2—C3—C4—C5 | 1.2 (15) |
N1—Co1—O1—C6 | −3.7 (7) | C1—N1—C5—C4 | 1.3 (13) |
O1—Co1—N1—C1 | −175.4 (8) | Co1—N1—C5—C4 | −177.9 (7) |
O1ii—Co1—N1—C1 | 94.2 (9) | C1—N1—C5—C6 | 176.1 (7) |
N1i—Co1—N1—C1 | −83.4 (7) | Co1—N1—C5—C6 | −3.1 (8) |
N1ii—Co1—N1—C1 | 8.8 (8) | C3—C4—C5—N1 | −1.8 (14) |
O1—Co1—N1—C5 | 3.7 (6) | C3—C4—C5—C6 | −176.3 (8) |
O1ii—Co1—N1—C5 | −86.7 (6) | Co1—O1—C6—O2 | −177.8 (7) |
N1i—Co1—N1—C5 | 95.7 (7) | Co1—O1—C6—C5 | 2.9 (9) |
N1ii—Co1—N1—C5 | −172.1 (6) | N1—C5—C6—O2 | −179.0 (10) |
C5—N1—C1—C2 | −0.3 (13) | C4—C5—C6—O2 | −4.2 (13) |
Co1—N1—C1—C2 | 178.7 (6) | N1—C5—C6—O1 | 0.2 (9) |
N1—C1—C2—C3 | −0.2 (14) | C4—C5—C6—O1 | 174.9 (9) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2iii | 0.95 | 2.60 | 3.212 (14) | 123 |
Symmetry code: (iii) x−y+1, x, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Co(C6H4NO2)3] |
Mr | 425.24 |
Crystal system, space group | Hexagonal, P6 |
Temperature (K) | 120 |
a, c (Å) | 12.8617 (12), 6.2122 (9) |
V (Å3) | 890.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.01 |
Crystal size (mm) | 0.23 × 0.08 × 0.03 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.800, 0.970 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5635, 978, 893 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.197, 1.16 |
No. of reflections | 978 |
No. of parameters | 86 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.05, −0.59 |
Absolute structure | Flack (1983), 400 Friedel pairs |
Absolute structure parameter | −0.02 (7) |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.95 | 2.60 | 3.212 (14) | 123 |
Symmetry code: (i) x−y+1, x, z−1. |
Acknowledgements
Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749. Web of Science CSD CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fu, A.-Y. & Wang, D.-Q. (2005). Acta Cryst. E61, m481–m482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hynes, J. B. (1970). J. Med. Chem. 13, 1235–1237. CrossRef CAS PubMed Web of Science Google Scholar
Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881. Web of Science CrossRef Google Scholar
Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510. Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pelizzi, C. & Pelizzi, G. (1981). Transition Met. Chem. 6, 315–316. CSD CrossRef CAS Web of Science Google Scholar
Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydroxamic groups and their derivatives are often used in syntheses of polynuclear metal complexes (Dobosz et al., 1999; Fritsky et al., 1998; Sachse et al., 2008). However, functionalized hydroxamate ligands having additional donor functions often undergo hydrolytic destruction when complex formation with 3d-metal ions takes place (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000). As a result, a carboxylic group is formed. The title compound was obtained as a result of hydrolytic decomposition of pyridine-2-hydroxamic acid during the reaction of complex formation with cobalt(II) perchlorate.
In the title compound, the CoIII ion lies on a threefold rotation axis and is in a distorted octahedral environment of three N and three O donor atoms from three pyridine-2-carboxylate ligands (Fig. 1). Unlike in the case of earlier reported tris(pyridine-2-carboxylato)cobalt(III) monohydrate, in which the realization of mer-isomer is observed, in the title complex three pyridine-2-carboxylate ligands are disposed in a fac-fashion (Fu & Wang, 2005; Pelizzi & Pelizzi, 1981). The ligands are coordinated in a chelate mode, forming three five-membered rings. The Co—N and Co—O bond lengths are consistent with the values typically quoted for the octahedral cobalt(III) complexes with N,O-mixed donor ligands (Mokhir et al., 2002; Sliva et al., 1997). The C—O bond lengths in the deprotonated carboxylate groups of the ligands differ significantly [1.232 (14) and 1.339 (15) Å], which is typical for monodentately coordinated carboxylates (Wörl, Fritsky et al., 2005; Wörl, Pritzkow et al., 2005). The C—C and C—N bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2001; Kovbasyuk et al., 2004; Krämer & Fritsky, 2000; Moroz et al., 2010).
In the crystal, the translational complex molecules are organized into columns along the c axis (Fig. 2). The neighboring molecules are united by C—H···O hydrogen bonds (Table 1).