metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

(SP-4-2)-Chlorido{N-[2-(di­phenyl­phosphan­yl)benzyl­­idene]benzyl­amine-κ2P,N}(meth­yl)palladium(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 8 September 2011; accepted 29 September 2011; online 5 October 2011)

In the title PdII complex, [Pd(CH3)Cl(C26H22NP)], the PdII atom is coordinated in a slightly distorted square-planar geometry by the imino N and phosphane P atoms of the ligand, by one chloride ion and by a methyl ligand. The methyl group is trans to the N atom of the ligand.

Related literature

For structures with related ligands, see: Coleman et al. (2001[Coleman, K. S., Green, M. L. H., Pascu, S. I., Rees, N. H., Cowley, A. R. & Rees, L. H. (2001). J. Chem. Soc. Dalton Trans. pp. 3384-3395.]); Ghilardi et al. (1992[Ghilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. pp. 3371-3376.]); Sanchez et al. (1998[Sanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165-169.], 1999[Sanchez, G., Serrano, J. L., Moral, M. A., Perez, J., Molins, E. & Lopez, G. (1999). Polyhedron, 18, 3057-3064.], 2001[Sanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100-104.]); Chiririwa et al. (2011[Chiririwa, H., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m608-m609.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(CH3)Cl(C26H22NP)]

  • Mr = 536.30

  • Monoclinic, P 21 /n

  • a = 10.0147 (8) Å

  • b = 21.8935 (18) Å

  • c = 10.7478 (8) Å

  • β = 94.192 (2)°

  • V = 2350.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 173 K

  • 0.13 × 0.12 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.971

  • 32545 measured reflections

  • 5809 independent reflections

  • 4857 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.03

  • 5809 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, palladium complexes with iminophosphane ligands of the type N-[(2-diphenylphosphanyl)benzylidene]amine type have been used as catalyst precursors for a range of organic reactions. Our group is interested in these types of complexes and we recently reported one such type of complex (Chiririwa et al., 2011). The molecular structure of the title compound revealed a slightly distorted square planar geometry around the palladium metal center. The Pd—P distance of 2.1939 (7) Å is within the expected range and close to the values determined for the dihalide complexes of the same ligand (2.1925 (9) Å, Coleman et al., 2001).

Related literature top

For structures with related ligands, see: Coleman et al. (2001); Ghilardi et al. (1992); Sanchez et al. (1998, 1999, 2001); Chiririwa et al. (2011).

Experimental top

To a solution of the precursor [PdClMe(COD)] (0.07 g, 0.27 mmol) in anhydrous CH2Cl2 (10 ml) was added the calculated amount of iminophosphane ligand in CH2Cl2 solution, and the reaction wmixture as stirred at room temperature for 1 h. The yellow solution was then concentrated under reduced pressure to half volume and the addition of hexane caused precipitation of complex, which was filtered off, washed with Et2O and dried under vacuum for 4 h. Orange crystals of the title compound were obtained in 50% yield. Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of a DMSO-d6/CH2Cl2 solution of the title compound at room temperature.

Refinement top

The aromatic, methylene, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids.
(SP-4-2)-Chlorido{N-[2- (diphenylphosphanyl)benzylidene]benzylamine- κ2P,N}(methyl)palladium(II) top
Crystal data top
[Pd(CH3)Cl(C26H22NP)]F(000) = 1088
Mr = 536.30Dx = 1.516 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7032 reflections
a = 10.0147 (8) Åθ = 1.9–30.7°
b = 21.8935 (18) ŵ = 0.99 mm1
c = 10.7478 (8) ÅT = 173 K
β = 94.192 (2)°Needle, orange
V = 2350.2 (3) Å30.13 × 0.12 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5809 independent reflections
Radiation source: fine-focus sealed tube4857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 2.1°
n/a scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
k = 2929
Tmin = 0.883, Tmax = 0.971l = 1413
32545 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0424P)2 + 2.9231P]
where P = (Fo2 + 2Fc2)/3
5809 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Pd(CH3)Cl(C26H22NP)]V = 2350.2 (3) Å3
Mr = 536.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0147 (8) ŵ = 0.99 mm1
b = 21.8935 (18) ÅT = 173 K
c = 10.7478 (8) Å0.13 × 0.12 × 0.03 mm
β = 94.192 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5809 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4857 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.971Rint = 0.043
32545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 1.21 e Å3
5809 reflectionsΔρmin = 0.62 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.14680 (2)0.803769 (10)0.037830 (19)0.02303 (7)
Cl20.00399 (7)0.71581 (4)0.04518 (7)0.03620 (17)
C30.03775 (19)0.84358 (9)0.17933 (18)0.0076 (4)
H3A0.03180.88780.16640.011*
H3B0.08370.83510.26120.011*
H3C0.05260.82610.17570.011*
P40.27908 (6)0.88365 (3)0.03775 (6)0.02086 (14)
C50.2990 (3)0.93431 (13)0.1722 (2)0.0244 (5)
C60.3269 (3)0.90852 (15)0.2906 (3)0.0320 (6)
H60.32980.86540.29990.038*
C70.3503 (3)0.94591 (17)0.3946 (3)0.0378 (7)
H70.36840.92830.47490.045*
C80.3470 (3)1.00886 (17)0.3808 (3)0.0383 (7)
H80.36351.03440.45170.046*
C90.3199 (3)1.03468 (15)0.2641 (3)0.0359 (7)
H90.31781.07780.25520.043*
C100.2958 (3)0.99750 (14)0.1599 (3)0.0289 (6)
H100.27701.01540.08000.035*
C110.2327 (3)0.93237 (12)0.0962 (2)0.0230 (5)
C120.0979 (3)0.94571 (15)0.1249 (3)0.0342 (7)
H120.03220.93000.07410.041*
C130.0595 (3)0.98184 (17)0.2272 (3)0.0432 (8)
H130.03240.99120.24570.052*
C140.1539 (3)1.00428 (16)0.3024 (3)0.0399 (8)
H140.12701.02890.37260.048*
C150.2879 (3)0.99095 (15)0.2756 (3)0.0354 (7)
H150.35281.00630.32770.042*
C160.3278 (3)0.95514 (14)0.1728 (3)0.0282 (6)
H160.42000.94610.15460.034*
C170.4509 (3)0.86061 (13)0.0161 (2)0.0226 (5)
C180.5588 (3)0.89176 (13)0.0761 (3)0.0261 (6)
H180.54230.92370.13300.031*
C190.6903 (3)0.87685 (14)0.0541 (3)0.0292 (6)
H190.76250.89810.09680.035*
C200.7159 (3)0.83128 (15)0.0296 (3)0.0308 (6)
H200.80550.82090.04440.037*
C210.6097 (3)0.80071 (14)0.0920 (3)0.0297 (6)
H210.62730.77030.15170.036*
C220.4772 (3)0.81369 (13)0.0687 (3)0.0250 (6)
C230.3733 (3)0.77818 (14)0.1409 (3)0.0281 (6)
H230.39980.75900.21440.034*
N240.2515 (2)0.77023 (11)0.1160 (2)0.0268 (5)
C250.1677 (3)0.73599 (14)0.2122 (3)0.0320 (6)
H25A0.11180.70580.17120.038*
H25B0.22610.71350.26680.038*
C260.0787 (3)0.77936 (14)0.2899 (3)0.0298 (6)
C270.1329 (3)0.81835 (16)0.3762 (3)0.0382 (7)
H270.22680.81860.38380.046*
C280.0509 (4)0.85650 (18)0.4506 (3)0.0459 (8)
H280.08850.88290.50890.055*
C290.0870 (4)0.85608 (18)0.4398 (3)0.0471 (8)
H290.14350.88190.49160.057*
C300.1421 (3)0.81823 (17)0.3541 (3)0.0407 (8)
H300.23600.81820.34670.049*
C310.0594 (3)0.78024 (15)0.2789 (3)0.0338 (7)
H310.09720.75460.21940.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02098 (11)0.02433 (12)0.02424 (11)0.00327 (8)0.00494 (7)0.00132 (8)
Cl20.0312 (4)0.0368 (4)0.0411 (4)0.0125 (3)0.0065 (3)0.0015 (3)
C30.0080 (8)0.0087 (9)0.0069 (9)0.0025 (7)0.0057 (7)0.0015 (7)
P40.0200 (3)0.0219 (3)0.0212 (3)0.0011 (2)0.0052 (2)0.0004 (3)
C50.0223 (12)0.0276 (14)0.0243 (13)0.0017 (10)0.0077 (10)0.0030 (11)
C60.0357 (15)0.0345 (16)0.0260 (14)0.0035 (13)0.0034 (12)0.0022 (12)
C70.0412 (17)0.049 (2)0.0231 (14)0.0068 (15)0.0023 (12)0.0017 (13)
C80.0374 (16)0.048 (2)0.0296 (16)0.0045 (14)0.0058 (13)0.0136 (14)
C90.0383 (17)0.0307 (16)0.0395 (17)0.0004 (13)0.0090 (13)0.0085 (13)
C100.0305 (14)0.0300 (15)0.0269 (14)0.0009 (12)0.0079 (11)0.0007 (12)
C110.0251 (13)0.0227 (13)0.0215 (12)0.0010 (10)0.0027 (10)0.0004 (10)
C120.0251 (14)0.0404 (18)0.0379 (17)0.0046 (12)0.0080 (12)0.0095 (14)
C130.0321 (16)0.051 (2)0.046 (2)0.0076 (15)0.0019 (14)0.0114 (16)
C140.0482 (19)0.0397 (19)0.0306 (16)0.0012 (15)0.0047 (14)0.0118 (14)
C150.0402 (17)0.0419 (18)0.0245 (14)0.0071 (14)0.0053 (12)0.0054 (13)
C160.0254 (13)0.0342 (16)0.0251 (13)0.0027 (11)0.0030 (11)0.0029 (12)
C170.0210 (12)0.0263 (14)0.0209 (12)0.0002 (10)0.0038 (9)0.0040 (10)
C180.0261 (13)0.0257 (14)0.0266 (14)0.0003 (11)0.0026 (11)0.0007 (11)
C190.0213 (12)0.0338 (16)0.0321 (15)0.0018 (11)0.0007 (11)0.0060 (12)
C200.0214 (13)0.0379 (17)0.0335 (15)0.0044 (12)0.0051 (11)0.0044 (13)
C210.0258 (13)0.0339 (16)0.0301 (14)0.0046 (12)0.0066 (11)0.0029 (12)
C220.0250 (13)0.0261 (14)0.0244 (13)0.0022 (10)0.0043 (10)0.0017 (11)
C230.0294 (14)0.0287 (15)0.0269 (14)0.0036 (12)0.0072 (11)0.0040 (12)
N240.0276 (11)0.0248 (12)0.0283 (12)0.0005 (9)0.0032 (9)0.0044 (10)
C250.0322 (15)0.0324 (16)0.0319 (15)0.0031 (12)0.0053 (12)0.0130 (13)
C260.0294 (14)0.0338 (16)0.0265 (14)0.0056 (12)0.0039 (11)0.0134 (12)
C270.0343 (16)0.0465 (19)0.0346 (16)0.0073 (14)0.0087 (13)0.0080 (14)
C280.051 (2)0.050 (2)0.0379 (18)0.0067 (17)0.0099 (15)0.0018 (16)
C290.048 (2)0.049 (2)0.0426 (19)0.0011 (17)0.0033 (16)0.0041 (17)
C300.0309 (16)0.045 (2)0.0463 (19)0.0017 (14)0.0007 (14)0.0114 (15)
C310.0317 (15)0.0350 (16)0.0353 (16)0.0070 (13)0.0067 (12)0.0092 (13)
Geometric parameters (Å, º) top
Pd1—C32.1233 (19)C15—H150.9500
Pd1—N242.150 (2)C16—H160.9500
Pd1—P42.1939 (7)C17—C181.395 (4)
Pd1—Cl22.4035 (8)C17—C221.410 (4)
C3—H3A0.9800C18—C191.394 (4)
C3—H3B0.9800C18—H180.9500
C3—H3C0.9800C19—C201.380 (4)
P4—C51.821 (3)C19—H190.9500
P4—C171.825 (3)C20—C211.387 (4)
P4—C111.825 (3)C20—H200.9500
C5—C101.390 (4)C21—C221.397 (4)
C5—C61.402 (4)C21—H210.9500
C6—C71.391 (4)C22—C231.474 (4)
C6—H60.9500C23—N241.279 (4)
C7—C81.386 (5)C23—H230.9500
C7—H70.9500N24—C251.486 (4)
C8—C91.384 (5)C25—C261.512 (4)
C8—H80.9500C25—H25A0.9900
C9—C101.392 (4)C25—H25B0.9900
C9—H90.9500C26—C311.396 (4)
C10—H100.9500C26—C271.399 (4)
C11—C121.393 (4)C27—C281.384 (5)
C11—C161.396 (4)C27—H270.9500
C12—C131.386 (4)C28—C291.395 (5)
C12—H120.9500C28—H280.9500
C13—C141.378 (5)C29—C301.383 (5)
C13—H130.9500C29—H290.9500
C14—C151.382 (5)C30—C311.390 (5)
C14—H140.9500C30—H300.9500
C15—C161.390 (4)C31—H310.9500
C3—Pd1—N24174.86 (9)C15—C16—C11120.1 (3)
C3—Pd1—P490.87 (6)C15—C16—H16120.0
N24—Pd1—P486.76 (7)C11—C16—H16120.0
C3—Pd1—Cl288.10 (6)C18—C17—C22118.7 (2)
N24—Pd1—Cl294.38 (7)C18—C17—P4120.8 (2)
P4—Pd1—Cl2178.09 (3)C22—C17—P4120.4 (2)
Pd1—C3—H3A109.5C19—C18—C17121.1 (3)
Pd1—C3—H3B109.5C19—C18—H18119.5
H3A—C3—H3B109.5C17—C18—H18119.5
Pd1—C3—H3C109.5C20—C19—C18120.2 (3)
H3A—C3—H3C109.5C20—C19—H19119.9
H3B—C3—H3C109.5C18—C19—H19119.9
C5—P4—C17102.71 (12)C19—C20—C21119.4 (3)
C5—P4—C11106.07 (13)C19—C20—H20120.3
C17—P4—C11104.43 (12)C21—C20—H20120.3
C5—P4—Pd1121.09 (9)C20—C21—C22121.3 (3)
C17—P4—Pd1110.79 (9)C20—C21—H21119.3
C11—P4—Pd1110.33 (9)C22—C21—H21119.3
C10—C5—C6119.3 (3)C21—C22—C17119.2 (3)
C10—C5—P4122.0 (2)C21—C22—C23116.2 (2)
C6—C5—P4118.6 (2)C17—C22—C23124.5 (2)
C7—C6—C5120.2 (3)N24—C23—C22127.5 (3)
C7—C6—H6119.9N24—C23—H23116.2
C5—C6—H6119.9C22—C23—H23116.2
C8—C7—C6119.9 (3)C23—N24—C25114.9 (2)
C8—C7—H7120.1C23—N24—Pd1129.8 (2)
C6—C7—H7120.1C25—N24—Pd1115.15 (17)
C9—C8—C7120.3 (3)N24—C25—C26110.3 (2)
C9—C8—H8119.9N24—C25—H25A109.6
C7—C8—H8119.9C26—C25—H25A109.6
C8—C9—C10120.1 (3)N24—C25—H25B109.6
C8—C9—H9120.0C26—C25—H25B109.6
C10—C9—H9120.0H25A—C25—H25B108.1
C5—C10—C9120.3 (3)C31—C26—C27118.9 (3)
C5—C10—H10119.9C31—C26—C25120.6 (3)
C9—C10—H10119.9C27—C26—C25120.5 (3)
C12—C11—C16119.1 (3)C28—C27—C26120.6 (3)
C12—C11—P4118.9 (2)C28—C27—H27119.7
C16—C11—P4121.9 (2)C26—C27—H27119.7
C13—C12—C11120.2 (3)C27—C28—C29119.8 (3)
C13—C12—H12119.9C27—C28—H28120.1
C11—C12—H12119.9C29—C28—H28120.1
C14—C13—C12120.4 (3)C30—C29—C28120.3 (4)
C14—C13—H13119.8C30—C29—H29119.8
C12—C13—H13119.8C28—C29—H29119.8
C13—C14—C15120.0 (3)C29—C30—C31119.7 (3)
C13—C14—H14120.0C29—C30—H30120.1
C15—C14—H14120.0C31—C30—H30120.1
C14—C15—C16120.2 (3)C30—C31—C26120.7 (3)
C14—C15—H15119.9C30—C31—H31119.6
C16—C15—H15119.9C26—C31—H31119.6
C3—Pd1—P4—C521.97 (12)Pd1—P4—C17—C18144.6 (2)
N24—Pd1—P4—C5162.59 (13)C5—P4—C17—C22170.6 (2)
C3—Pd1—P4—C17142.22 (11)C11—P4—C17—C2278.9 (2)
N24—Pd1—P4—C1742.35 (11)Pd1—P4—C17—C2239.9 (2)
C3—Pd1—P4—C11102.64 (11)C22—C17—C18—C190.5 (4)
N24—Pd1—P4—C1172.79 (11)P4—C17—C18—C19176.0 (2)
C17—P4—C5—C10101.3 (2)C17—C18—C19—C201.0 (4)
C11—P4—C5—C108.0 (3)C18—C19—C20—C210.3 (4)
Pd1—P4—C5—C10134.6 (2)C19—C20—C21—C222.2 (5)
C17—P4—C5—C674.6 (2)C20—C21—C22—C172.7 (4)
C11—P4—C5—C6176.1 (2)C20—C21—C22—C23180.0 (3)
Pd1—P4—C5—C649.5 (2)C18—C17—C22—C211.4 (4)
C10—C5—C6—C70.4 (4)P4—C17—C22—C21174.2 (2)
P4—C5—C6—C7176.3 (2)C18—C17—C22—C23178.4 (3)
C5—C6—C7—C80.5 (5)P4—C17—C22—C232.8 (4)
C6—C7—C8—C90.3 (5)C21—C22—C23—N24161.0 (3)
C7—C8—C9—C100.0 (5)C17—C22—C23—N2421.9 (5)
C6—C5—C10—C90.0 (4)C22—C23—N24—C25175.4 (3)
P4—C5—C10—C9175.9 (2)C22—C23—N24—Pd10.2 (5)
C8—C9—C10—C50.1 (4)P4—Pd1—N24—C2331.1 (3)
C5—P4—C11—C1287.4 (3)Cl2—Pd1—N24—C23147.4 (3)
C17—P4—C11—C12164.5 (2)P4—Pd1—N24—C25144.5 (2)
Pd1—P4—C11—C1245.4 (3)Cl2—Pd1—N24—C2537.0 (2)
C5—P4—C11—C1694.5 (2)C23—N24—C25—C26102.6 (3)
C17—P4—C11—C1613.6 (3)Pd1—N24—C25—C2673.7 (3)
Pd1—P4—C11—C16132.7 (2)N24—C25—C26—C31109.5 (3)
C16—C11—C12—C130.9 (5)N24—C25—C26—C2772.0 (3)
P4—C11—C12—C13179.0 (3)C31—C26—C27—C280.9 (5)
C11—C12—C13—C140.8 (5)C25—C26—C27—C28177.6 (3)
C12—C13—C14—C150.2 (6)C26—C27—C28—C290.1 (5)
C13—C14—C15—C160.2 (5)C27—C28—C29—C300.8 (5)
C14—C15—C16—C110.1 (5)C28—C29—C30—C310.3 (5)
C12—C11—C16—C150.4 (4)C29—C30—C31—C260.7 (5)
P4—C11—C16—C15178.5 (2)C27—C26—C31—C301.3 (4)
C5—P4—C17—C1814.0 (2)C25—C26—C31—C30177.2 (3)
C11—P4—C17—C1896.6 (2)

Experimental details

Crystal data
Chemical formula[Pd(CH3)Cl(C26H22NP)]
Mr536.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.0147 (8), 21.8935 (18), 10.7478 (8)
β (°) 94.192 (2)
V3)2350.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.13 × 0.12 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.883, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
32545, 5809, 4857
Rint0.043
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.03
No. of reflections5809
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 0.62

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF) and the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiririwa, H., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m608–m609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationColeman, K. S., Green, M. L. H., Pascu, S. I., Rees, N. H., Cowley, A. R. & Rees, L. H. (2001). J. Chem. Soc. Dalton Trans. pp. 3384–3395.  Web of Science CSD CrossRef Google Scholar
First citationGhilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. pp. 3371–3376.  CSD CrossRef Web of Science Google Scholar
First citationSanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100–104.  CAS Google Scholar
First citationSanchez, G., Serrano, J. L., Moral, M. A., Perez, J., Molins, E. & Lopez, G. (1999). Polyhedron, 18, 3057–3064.  Web of Science CSD CrossRef CAS Google Scholar
First citationSanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165–169.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds