organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2826-o2827

(1S,2R,3R,8R,10S)-3-Chloro-2,8-dihy­dr­oxy-3,7-di­methyl-11-methyl­­idene-13-oxabi­cyclo­[8.3.0]tridec-6-en-12-one

aLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22. BP 146, FSTM, Université Hassan II, Mohammedia–Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 12 September 2011; accepted 27 September 2011; online 5 October 2011)

The title compound, C15H21ClO4, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from fused five- and ten-membered rings. The five-membered lactone ring has an envelope conformation with the flap atom, C(H)-C-C(H), displaced by 0.2325 (15) Å from the mean plane through the remaining four atoms, whereas the ten-membered ring displays an approximate chair–chair conformation. The dihedral angle between the two rings is 66.4 (2)°. In the crystal, mol­ecules are linked into chains propagating along the a axis by O—H⋯O hydrogen bonds.

Related literature

For the isolation and biological activity of 9α-hy­droxy­parthenolide, see: El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1993[Castaneda-Acosta, J., Fisher, N. H. & Varga, D. (1993). J. Nat. Prod. 56, 90-98.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83-91.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])

[Scheme 1]

Experimental

Crystal data
  • C15H21ClO4

  • Mr = 300.77

  • Orthorhombic, P 21 21 21

  • a = 8.0224 (2) Å

  • b = 12.1532 (2) Å

  • c = 15.4147 (4) Å

  • V = 1502.90 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 180 K

  • 0.35 × 0.27 × 0.17 mm

Data collection
  • Agilent Xcalibur Eos Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.889, Tmax = 1.000

  • 8982 measured reflections

  • 3053 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.04

  • 3053 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 614 Friedel pairs

  • Flack parameter: −0.06 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 1.96 2.763 (1) 167
O4—H4⋯O3ii 0.82 2.17 2.980 (1) 171
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the evaluation of medicinal plants and in particular, Anvillea radiata. The main constituent of the chloroform extract of the aerial parts of Anvillea radiata is 9α-hydroxyparthenolide (El Hassany et al., 2004). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Castaneda-Acosta et al., 1993; Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009), in order to prepare products with a high added value that can be used in the pharmacological industry. In the same context, we have treated 9α-hydroxyparthenolide with 5% of titanium tetrachloride (TiCl4)and obtained (1S, 2R, 3R, 8R, 10S)-3-chloro-2,8- dihydroxy-3,7-dimethyl-11-methylene-13-oxabicyclo[8.3.0]tridec-6-en-12-one with a yield of 52%. The structure of this new product was determined by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations. The molecular structure of the title compound, Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters QT = 0.147 (2) Å and ϕ2 = 58.1 (5)°. The ten-membered ring displays an approximate chair-chair conformation.In the crystal structure, molecules are linked into chains (Fig. 2) running along the a axis by intermolecular O—H···O hydrogen bonds (Table 1). Owing to the presence of Cl atom, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack, 1983) as C1(S), C2(R), C3(R), C8(R)and C10(S).

Related literature top

For the isolation and biological activity of 9α-hydroxyparthenolide, see: El Hassany et al. (2004); For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1993); Neukirch et al. (2003); Hwang et al. (2006); Neelakantan et al. (2009). For conformational analysis, see: Cremer & Pople (1975)

Experimental top

To a solution of 9α-hydroxyparthenolide (500 mg, 1.89 mmol) in 20 ml dichloromethane are added in small portions and carefully a catalytic amount (5%) of titanium tetrachloride (TiCl4). The reaction mixture was kept at room temperature and stirred for 3 h. Afterwards it was hydrolysed with 20 ml of water and extracted three times with dichloromethane (20 mL). The organic phases are combined, dried over anhydrous Na2SO4 and then evaporated under reduced pressure. The resulting residue is purified by chromatography on silica gel with hexane /ethyl acetate (30/70) as eluent. This allowed us to isolate in pure 291 mg (0,98 mmol, 52%) of (1S, 2R, 3R, 8R, 10S)-3-chloro-2,8-dihydroxy-3,7-dimethyl-11-methylene- 13-oxabicyclo[8.3.0]tridec-6-en-12-one. The title compound was recrystallized from ethyl acetate to produce crystals suitable for X-ray diffraction.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and O–H = 0.82 Å with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(1S,2R,3R,8R,10S)-3-Chloro-2,8- dihydroxy-3,7-dimethyl-11-methylidene-13-oxabicyclo[8.3.0]tridec-6-en-12-one top
Crystal data top
C15H21ClO4F(000) = 640
Mr = 300.77Dx = 1.329 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8982 reflections
a = 8.0224 (2) Åθ = 3.6–26.4°
b = 12.1532 (2) ŵ = 0.26 mm1
c = 15.4147 (4) ÅT = 180 K
V = 1502.90 (6) Å3Prism, colourless
Z = 40.35 × 0.27 × 0.17 mm
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
3053 independent reflections
Radiation source: Enhance (Mo) X-ray Source2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.6°
ω scansh = 109
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1515
Tmin = 0.889, Tmax = 1.000l = 1819
8982 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.3492P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3053 reflectionsΔρmax = 0.21 e Å3
185 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 614 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (5)
Crystal data top
C15H21ClO4V = 1502.90 (6) Å3
Mr = 300.77Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0224 (2) ŵ = 0.26 mm1
b = 12.1532 (2) ÅT = 180 K
c = 15.4147 (4) Å0.35 × 0.27 × 0.17 mm
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
3053 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2944 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 1.000Rint = 0.019
8982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.21 e Å3
3053 reflectionsAbsolute structure: Flack (1983), 614 Friedel pairs
185 parametersAbsolute structure parameter: 0.06 (5)
0 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent, 2010)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.47204 (6)0.42068 (3)0.58743 (3)0.03475 (11)
C10.60869 (16)0.59828 (11)0.36912 (9)0.0169 (3)
H10.67250.53790.34320.020*
C20.55399 (17)0.56590 (10)0.46192 (9)0.0169 (3)
H20.64650.58330.50110.020*
C30.51598 (18)0.44248 (11)0.47165 (9)0.0193 (3)
C40.66321 (18)0.36766 (11)0.44947 (11)0.0226 (3)
H4A0.67740.36910.38700.027*
H4B0.63220.29310.46510.027*
C50.83398 (18)0.39143 (12)0.49062 (11)0.0271 (3)
H5A0.82080.39350.55320.033*
H5B0.90850.33100.47700.033*
C60.91472 (16)0.49718 (12)0.46184 (10)0.0211 (3)
H60.92890.55190.50340.025*
C70.96724 (17)0.51863 (11)0.38212 (10)0.0201 (3)
C81.01946 (18)0.63373 (12)0.35599 (10)0.0213 (3)
H81.11060.62810.31390.026*
C90.87577 (18)0.69698 (12)0.31401 (10)0.0231 (3)
H9A0.84840.66190.25930.028*
H9B0.91350.77110.30120.028*
C100.71583 (16)0.70436 (11)0.36933 (10)0.0181 (3)
H100.74580.72300.42920.022*
C110.59596 (18)0.78895 (13)0.33507 (10)0.0228 (3)
C120.44945 (19)0.73049 (13)0.29884 (11)0.0264 (3)
C130.6075 (2)0.89766 (13)0.33538 (12)0.0329 (4)
H13A0.52170.94010.31230.039*
H13B0.70130.93160.35870.039*
C140.9722 (2)0.43627 (13)0.30957 (11)0.0296 (3)
H14A0.95790.36360.33270.044*
H14B1.07770.44090.28040.044*
H14C0.88420.45170.26920.044*
C150.36070 (18)0.40750 (12)0.42250 (11)0.0267 (3)
H15A0.37590.42150.36170.040*
H15B0.26660.44850.44330.040*
H15C0.34150.33040.43140.040*
O10.33335 (15)0.76689 (11)0.25906 (9)0.0408 (3)
O20.46321 (13)0.62157 (8)0.31574 (7)0.0235 (2)
O30.41528 (12)0.63183 (8)0.48730 (7)0.0219 (2)
H30.44830.68440.51590.033*
O41.07598 (12)0.69787 (8)0.42835 (8)0.0261 (2)
H41.16460.67300.44610.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0427 (2)0.03388 (19)0.0276 (2)0.00420 (18)0.00966 (18)0.00940 (16)
C10.0124 (6)0.0175 (6)0.0206 (7)0.0001 (5)0.0032 (5)0.0002 (5)
C20.0130 (6)0.0169 (6)0.0208 (7)0.0019 (5)0.0001 (5)0.0004 (5)
C30.0188 (7)0.0195 (6)0.0195 (7)0.0008 (5)0.0027 (6)0.0042 (5)
C40.0204 (7)0.0152 (6)0.0322 (8)0.0012 (5)0.0019 (6)0.0009 (6)
C50.0201 (7)0.0237 (8)0.0374 (9)0.0051 (6)0.0026 (7)0.0084 (6)
C60.0134 (6)0.0208 (6)0.0290 (8)0.0032 (5)0.0038 (6)0.0013 (6)
C70.0109 (6)0.0205 (6)0.0289 (8)0.0014 (5)0.0007 (6)0.0065 (6)
C80.0150 (7)0.0231 (7)0.0257 (7)0.0018 (5)0.0029 (6)0.0057 (6)
C90.0200 (7)0.0253 (7)0.0240 (8)0.0045 (6)0.0034 (6)0.0022 (6)
C100.0155 (6)0.0179 (6)0.0208 (7)0.0011 (5)0.0002 (6)0.0018 (6)
C110.0201 (7)0.0255 (7)0.0228 (8)0.0007 (6)0.0026 (6)0.0061 (6)
C120.0217 (7)0.0308 (8)0.0267 (8)0.0005 (6)0.0007 (7)0.0100 (6)
C130.0331 (9)0.0247 (8)0.0408 (10)0.0031 (7)0.0023 (8)0.0073 (7)
C140.0240 (8)0.0288 (8)0.0361 (9)0.0018 (6)0.0042 (7)0.0135 (7)
C150.0191 (7)0.0201 (7)0.0410 (9)0.0039 (6)0.0041 (7)0.0039 (7)
O10.0255 (6)0.0461 (7)0.0507 (8)0.0016 (5)0.0121 (6)0.0243 (6)
O20.0193 (5)0.0256 (5)0.0255 (5)0.0039 (4)0.0078 (5)0.0052 (4)
O30.0156 (5)0.0193 (5)0.0308 (6)0.0022 (4)0.0021 (4)0.0050 (4)
O40.0169 (5)0.0233 (5)0.0380 (7)0.0005 (4)0.0052 (4)0.0100 (5)
Geometric parameters (Å, º) top
Cl—C31.8384 (15)C8—C91.529 (2)
C1—O21.4557 (16)C8—H80.9800
C1—C21.5471 (19)C9—C101.5433 (19)
C1—C101.5495 (18)C9—H9A0.9700
C1—H10.9800C9—H9B0.9700
C2—O31.4260 (16)C10—C111.504 (2)
C2—C31.5380 (18)C10—H100.9800
C2—H20.9800C11—C131.324 (2)
C3—C151.519 (2)C11—C121.483 (2)
C3—C41.5292 (19)C12—O11.1997 (19)
C4—C51.537 (2)C12—O21.3536 (18)
C4—H4A0.9700C13—H13A0.9300
C4—H4B0.9700C13—H13B0.9300
C5—C61.506 (2)C14—H14A0.9600
C5—H5A0.9700C14—H14B0.9600
C5—H5B0.9700C14—H14C0.9600
C6—C71.325 (2)C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C141.5014 (19)C15—H15C0.9600
C7—C81.5148 (19)O3—H30.8200
C8—O41.4343 (17)O4—H40.8200
O2—C1—C2110.16 (11)O4—C8—H8108.5
O2—C1—C10106.51 (10)C7—C8—H8108.5
C2—C1—C10111.53 (11)C9—C8—H8108.5
O2—C1—H1109.5C8—C9—C10114.96 (12)
C2—C1—H1109.5C8—C9—H9A108.5
C10—C1—H1109.5C10—C9—H9A108.5
O3—C2—C3111.50 (11)C8—C9—H9B108.5
O3—C2—C1109.40 (11)C10—C9—H9B108.5
C3—C2—C1113.23 (11)H9A—C9—H9B107.5
O3—C2—H2107.5C11—C10—C9112.17 (12)
C3—C2—H2107.5C11—C10—C1102.32 (11)
C1—C2—H2107.5C9—C10—C1114.31 (12)
C15—C3—C4110.83 (12)C11—C10—H10109.3
C15—C3—C2112.77 (11)C9—C10—H10109.3
C4—C3—C2113.89 (11)C1—C10—H10109.3
C15—C3—Cl106.66 (10)C13—C11—C12122.32 (15)
C4—C3—Cl106.23 (10)C13—C11—C10129.51 (15)
C2—C3—Cl105.86 (9)C12—C11—C10108.16 (13)
C3—C4—C5118.97 (12)O1—C12—O2121.48 (15)
C3—C4—H4A107.6O1—C12—C11129.15 (15)
C5—C4—H4A107.6O2—C12—C11109.36 (13)
C3—C4—H4B107.6C11—C13—H13A120.0
C5—C4—H4B107.6C11—C13—H13B120.0
H4A—C4—H4B107.0H13A—C13—H13B120.0
C6—C5—C4114.97 (12)C7—C14—H14A109.5
C6—C5—H5A108.5C7—C14—H14B109.5
C4—C5—H5A108.5H14A—C14—H14B109.5
C6—C5—H5B108.5C7—C14—H14C109.5
C4—C5—H5B108.5H14A—C14—H14C109.5
H5A—C5—H5B107.5H14B—C14—H14C109.5
C7—C6—C5125.30 (14)C3—C15—H15A109.5
C7—C6—H6117.3C3—C15—H15B109.5
C5—C6—H6117.3H15A—C15—H15B109.5
C6—C7—C14124.62 (13)C3—C15—H15C109.5
C6—C7—C8121.08 (13)H15A—C15—H15C109.5
C14—C7—C8114.22 (12)H15B—C15—H15C109.5
O4—C8—C7112.49 (12)C12—O2—C1111.36 (11)
O4—C8—C9107.12 (11)C2—O3—H3109.5
C7—C8—C9111.61 (12)C8—O4—H4109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.962.763 (1)167
O4—H4···O3ii0.822.172.980 (1)171
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H21ClO4
Mr300.77
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)8.0224 (2), 12.1532 (2), 15.4147 (4)
V3)1502.90 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.35 × 0.27 × 0.17
Data collection
DiffractometerAgilent Xcalibur Eos Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.889, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8982, 3053, 2944
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.04
No. of reflections3053
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21
Absolute structureFlack (1983), 614 Friedel pairs
Absolute structure parameter0.06 (5)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.962.763 (1)167
O4—H4···O3ii0.822.172.980 (1)171
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCastaneda-Acosta, J., Fisher, N. H. & Varga, D. (1993). J. Nat. Prod. 56, 90–98.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2826-o2827
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds