metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-bi­phenyl-3,3′-di­carboxyl­ato)(1,10-phenanthroline)cadmium]

aDepartment of Chemistry, Dezhou University, Dezhou, Shandong 253023, People's Republic of China
*Correspondence e-mail: dzyeqiu@126.com

(Received 19 September 2011; accepted 12 October 2011; online 22 October 2011)

In the title compound, [Cd(C14H8O4)(C12H8N2)]n, the CdII ion is seven-coordinated in a distorted penta­gonal–bipyramidal coordination geometry by five O atoms from bridging biphenyl-3,3′-dicarboylate (dpda) ligands and two N atoms from a 1,10-phenanthroline (1,10-phen) ligand. In the crystal, dinuclear units with a Cd⋯Cd separation of 3.8208 (7) Å are observed. Each of these dinuclear units is bridged via 3,3′-bpda in a chelating/chelating and bridging fashion, generating a zigzag chain along the c axis. Neighboring chains are further packed via weak ππ inter­actions between inter­chain parallel 1,10-phen rings [centroid–centroid distance = 3.5197 (9) Å] into a three-dimensional supra­molecular architecture.

Related literature

For the use of biphenyl­dicarboxyl­ato ligands in supra­molecular chemistry, see: Furukawa et al. (2008[Furukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M. & Yaghi, O. M. (2008). J. Am. Chem. Soc. 130, 11650-11661.]); Qu (2007[Qu, Z. (2007). Chin. J. Inorg. Chem. 23, 1837-1839.]); Zhu (2010[Zhu, B.-Y. (2010). Acta Cryst. E66, m1214.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C14H8O4)(C12H8N2)]

  • Mr = 532.81

  • Monoclinic, C 2/c

  • a = 26.1947 (17) Å

  • b = 9.7258 (5) Å

  • c = 21.2247 (14) Å

  • β = 127.411 (1)°

  • V = 4295.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 296 K

  • 0.22 × 0.16 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.887

  • 12984 measured reflections

  • 4902 independent reflections

  • 3799 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 1.04

  • 4902 reflections

  • 298 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Polycarboxylate ligands have been widely used to construct coordination polymers due to their versatile coordination modes. The use of biphenyldicarboxylic acid and its derivatives have been reported in literature (Qu, 2007; Furukawa et al., 2008; Zhu, 2010). The title coordination polymer [Cd(C14H8O4)(C12H8N2)]n, (I), was obtained under hydrothermal conditions and herein its crystal structure is reported.

There is one CdII cation, one 3,3'-biphenyl-dicarboxylate anion (3,3'-bpda) and one 1,10-phenanthroline (1,10-phen) ligand observed in the asymmetric unit of (I). The CdII ion is seven coordinated in a distorted pentagonal bipyramidal coordination geometry by five O atoms (O1ii, O2i, O2ii, O3, O4) from bridging 3,3'-bpda with Cd—O bond lengths in the range of 2.258 (2)–2.515 (3) Å, two N atoms (N1, N2) from two 1,10-phen ligands with Cd—N bond lengths of 2.336 (3) and 2.368 (3) Å (Fig. 1). In the crystal structure of (I), dinuclear units with a Cd···Cd separation of 3.8208 (7) Å are observed. Each of these dinuclear units is bridged via 3,3'-bpda in a µ1 η1:η12 η1:η2 coordination mode into one dimensional zigzag chains. Parallel 1, 10-phen ligands are attached to the outside of the zigzag chain with centroid distances of 3.5197 (9) Å indicating weak π-π stacking interactions (Fig. 2). Neighboring chains are further packed via weak π-π interactions between interchain parallel 1,10-phen rings into the resulting three dimensional supramolecular architecture.

Related literature top

For the use of biphenyldicarboxylato ligands in supramolecular chemistry, see: Furukawa et al. (2008); Qu (2007); Zhu (2010).

Experimental top

To a 16 ml Teflon-lined stainless steel vessel was loaded 3,3'-biphenyl-dicarboxylic acid (0.0242 g, 0.1 mmol), 1,10-phenanthroline (0.0198 g, 0.1 mmol), NaOH (0.0080 g, 0.2 mmol) and Cd(NO3)2 × 4H2O (0.0308 g, 0.1 mmol), then it was sealed and heated to 160 °C for 72 h. After being cooled down to room temperature at a rate of -5 °C/h, colorless block shaped crystals are obtained after filtration. Yield: 0.025 g (47% based on Cd).

Refinement top

All H atoms bonded to C atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms [C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot of (I) at the 50% probability level. H atoms are represented by circles of arbitrary size. Symmetry code: (i)-x + 1, -y + 2, -z + 1; (ii)x, -y + 2, z - 1/2.
[Figure 2] Fig. 2. The one–dimensional zigzag chain structure of (I).
Poly[(µ3-biphenyl-3,3'-dicarboxylato)(1,10-phenanthroline)cadmium] top
Crystal data top
[Cd(C14H8O4)(C12H8N2)]F(000) = 2128
Mr = 532.81Dx = 1.648 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4252 reflections
a = 26.1947 (17) Åθ = 2.3–26.6°
b = 9.7258 (5) ŵ = 1.05 mm1
c = 21.2247 (14) ÅT = 296 K
β = 127.411 (1)°Block, colorless
V = 4295.0 (5) Å30.22 × 0.16 × 0.12 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4902 independent reflections
Radiation source: fine-focus sealed tube3799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3334
Tmin = 0.804, Tmax = 0.887k = 1212
12984 measured reflectionsl = 2227
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0264P)2 + 5.2631P]
where P = (Fo2 + 2Fc2)/3
4902 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 0.68 e Å3
20 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cd(C14H8O4)(C12H8N2)]V = 4295.0 (5) Å3
Mr = 532.81Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.1947 (17) ŵ = 1.05 mm1
b = 9.7258 (5) ÅT = 296 K
c = 21.2247 (14) Å0.22 × 0.16 × 0.12 mm
β = 127.411 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4902 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3799 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.887Rint = 0.029
12984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03320 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 0.68 e Å3
4902 reflectionsΔρmin = 0.39 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.576743 (12)0.54986 (2)0.356955 (13)0.03981 (9)
O40.58387 (13)0.7247 (2)0.43196 (14)0.0562 (6)
O20.53633 (12)1.4416 (2)0.71597 (14)0.0510 (6)
N10.55605 (13)0.3153 (3)0.35361 (14)0.0391 (6)
N20.66457 (14)0.4227 (3)0.38232 (16)0.0462 (7)
O10.60664 (16)1.2882 (2)0.80000 (16)0.0743 (9)
O30.63552 (15)0.5452 (3)0.50456 (15)0.0715 (8)
C80.63079 (16)0.9542 (3)0.62890 (18)0.0419 (7)
C220.7643 (2)0.2526 (5)0.4166 (2)0.0690 (11)
H220.79800.19690.42870.083*
C150.50313 (17)0.2623 (4)0.33813 (19)0.0493 (8)
H150.47070.32180.32670.059*
C90.61051 (15)0.8739 (3)0.56284 (18)0.0384 (7)
H90.57790.90680.51250.046*
C60.60253 (15)1.1531 (3)0.67908 (18)0.0378 (7)
H60.61931.10440.72560.045*
C250.66020 (16)0.2840 (3)0.38477 (18)0.0429 (8)
C70.57685 (16)1.2827 (3)0.66989 (18)0.0398 (7)
C50.60382 (15)1.0940 (3)0.62004 (18)0.0372 (7)
C210.70931 (19)0.1938 (4)0.4015 (2)0.0540 (9)
C260.60325 (16)0.2285 (3)0.37016 (17)0.0410 (7)
C240.71735 (19)0.4739 (4)0.3960 (2)0.0607 (10)
H240.72070.56860.39370.073*
C140.61750 (17)0.6662 (3)0.4976 (2)0.0462 (8)
C100.63737 (18)0.7474 (4)0.5699 (2)0.0510 (9)
C230.7685 (2)0.3906 (5)0.4137 (2)0.0713 (12)
H230.80490.43030.42340.086*
C20.5534 (2)1.3575 (4)0.6021 (2)0.0577 (10)
H20.53631.44470.59570.069*
C10.57283 (18)1.3394 (3)0.7327 (2)0.0475 (8)
C30.5556 (2)1.3028 (4)0.5438 (2)0.0668 (12)
H30.54071.35390.49860.080*
C170.5397 (2)0.0336 (4)0.3544 (2)0.0605 (11)
H170.53360.06060.35440.073*
C40.57985 (18)1.1717 (4)0.5526 (2)0.0513 (9)
H40.58011.13510.51230.062*
C160.4936 (2)0.1214 (4)0.3381 (2)0.0600 (10)
H160.45550.08850.32700.072*
C190.6478 (2)0.0034 (4)0.3886 (2)0.0646 (11)
H190.64390.09820.39010.078*
C110.6841 (3)0.6979 (5)0.6435 (3)0.0999 (17)
H110.70140.61110.64910.120*
C180.59693 (19)0.0839 (3)0.37142 (19)0.0505 (9)
C130.6786 (2)0.9026 (5)0.7021 (2)0.0867 (16)
H130.69260.95360.74700.104*
C120.7065 (3)0.7767 (6)0.7108 (3)0.118 (2)
H120.73990.74460.76100.142*
C200.7008 (2)0.0496 (4)0.4026 (2)0.0659 (11)
H200.73320.00950.41350.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05906 (17)0.02976 (12)0.03860 (14)0.00476 (11)0.03382 (12)0.00224 (10)
O40.0822 (18)0.0413 (13)0.0422 (14)0.0027 (13)0.0362 (14)0.0058 (11)
O20.0564 (15)0.0473 (13)0.0569 (15)0.0043 (12)0.0383 (13)0.0115 (11)
N10.0439 (15)0.0375 (14)0.0341 (14)0.0049 (12)0.0227 (12)0.0023 (11)
N20.0523 (17)0.0492 (17)0.0444 (16)0.0107 (14)0.0332 (14)0.0059 (13)
O10.145 (3)0.0429 (14)0.0609 (17)0.0272 (16)0.0757 (19)0.0103 (12)
O30.107 (2)0.0565 (13)0.0489 (9)0.0251 (13)0.0461 (13)0.0007 (11)
C80.0485 (19)0.0465 (18)0.0372 (17)0.0058 (16)0.0295 (15)0.0008 (15)
C220.066 (3)0.094 (3)0.058 (2)0.010 (3)0.043 (2)0.002 (2)
C150.055 (2)0.049 (2)0.046 (2)0.0103 (17)0.0320 (18)0.0016 (16)
C90.0429 (18)0.0410 (17)0.0334 (16)0.0023 (14)0.0243 (14)0.0009 (13)
C60.0468 (18)0.0352 (15)0.0384 (17)0.0041 (14)0.0295 (15)0.0034 (13)
C250.052 (2)0.0461 (19)0.0315 (17)0.0015 (16)0.0260 (16)0.0051 (14)
C70.0506 (19)0.0361 (16)0.0413 (17)0.0006 (14)0.0324 (16)0.0045 (14)
C50.0402 (17)0.0390 (16)0.0388 (17)0.0025 (13)0.0273 (15)0.0064 (13)
C210.061 (2)0.067 (2)0.0387 (19)0.0051 (19)0.0325 (18)0.0048 (17)
C260.054 (2)0.0372 (17)0.0282 (16)0.0054 (15)0.0231 (15)0.0034 (13)
C240.065 (3)0.066 (3)0.061 (2)0.016 (2)0.044 (2)0.0065 (19)
C140.061 (2)0.0433 (14)0.0453 (19)0.0021 (16)0.0380 (18)0.0038 (15)
C100.068 (2)0.0494 (19)0.0386 (18)0.0156 (18)0.0343 (18)0.0033 (15)
C230.056 (3)0.103 (4)0.070 (3)0.008 (2)0.046 (2)0.003 (3)
C20.086 (3)0.0426 (19)0.056 (2)0.0179 (19)0.049 (2)0.0063 (17)
C10.074 (2)0.0332 (17)0.053 (2)0.0027 (17)0.048 (2)0.0059 (16)
C30.107 (3)0.057 (2)0.053 (2)0.024 (2)0.057 (2)0.0156 (18)
C170.083 (3)0.039 (2)0.048 (2)0.019 (2)0.034 (2)0.0024 (16)
C40.071 (2)0.053 (2)0.0431 (19)0.0113 (18)0.0417 (19)0.0005 (16)
C160.071 (3)0.055 (2)0.050 (2)0.024 (2)0.035 (2)0.0018 (18)
C190.093 (3)0.0386 (19)0.055 (2)0.006 (2)0.041 (2)0.0048 (17)
C110.136 (4)0.084 (3)0.060 (3)0.060 (3)0.050 (3)0.004 (2)
C180.072 (3)0.0370 (17)0.0343 (18)0.0015 (17)0.0277 (18)0.0024 (14)
C130.112 (4)0.089 (3)0.037 (2)0.051 (3)0.034 (2)0.002 (2)
C120.150 (4)0.109 (3)0.056 (3)0.073 (3)0.042 (3)0.006 (2)
C200.088 (3)0.056 (2)0.054 (2)0.023 (2)0.043 (2)0.0011 (19)
Geometric parameters (Å, º) top
Cd1—O42.258 (2)C6—H60.9300
Cd1—N12.336 (3)C25—C211.413 (5)
Cd1—N22.368 (3)C25—C261.432 (4)
Cd1—O2i2.368 (2)C7—C21.380 (4)
Cd1—O1ii2.388 (2)C7—C11.505 (4)
Cd1—O2ii2.497 (2)C5—C41.387 (4)
Cd1—O32.515 (3)C21—C201.423 (5)
Cd1—C142.731 (3)C26—C181.419 (4)
O4—C141.245 (4)C24—C231.406 (6)
O2—C11.271 (4)C24—H240.9300
O2—Cd1i2.368 (2)C14—C101.509 (4)
O2—Cd1iii2.497 (2)C10—C111.360 (5)
N1—C151.320 (4)C23—H230.9300
N1—C261.355 (4)C2—C31.378 (5)
N2—C241.325 (4)C2—H20.9300
N2—C251.358 (4)C3—C41.386 (5)
O1—C11.238 (4)C3—H30.9300
O1—Cd1iii2.388 (2)C17—C161.341 (6)
O3—C141.243 (4)C17—C181.401 (6)
C8—C131.367 (5)C17—H170.9300
C8—C91.397 (4)C4—H40.9300
C8—C51.491 (4)C16—H160.9300
C22—C231.352 (6)C19—C201.336 (6)
C22—C211.393 (5)C19—C181.428 (6)
C22—H220.9300C19—H190.9300
C15—C161.393 (5)C11—C121.398 (6)
C15—H150.9300C11—H110.9300
C9—C101.380 (4)C13—C121.380 (6)
C9—H90.9300C13—H130.9300
C6—C71.385 (4)C12—H120.9300
C6—C51.398 (4)C20—H200.9300
O4—Cd1—N1132.46 (9)C4—C5—C6117.3 (3)
O4—Cd1—N2125.46 (10)C4—C5—C8120.7 (3)
N1—Cd1—N270.87 (9)C6—C5—C8122.0 (3)
O4—Cd1—O2i88.24 (9)C22—C21—C25117.3 (4)
N1—Cd1—O2i80.75 (9)C22—C21—C20123.4 (4)
N2—Cd1—O2i145.46 (8)C25—C21—C20119.3 (4)
O4—Cd1—O1ii87.04 (9)N1—C26—C18121.6 (3)
N1—Cd1—O1ii140.34 (9)N1—C26—C25119.2 (3)
N2—Cd1—O1ii83.53 (10)C18—C26—C25119.2 (3)
O2i—Cd1—O1ii108.10 (10)N2—C24—C23122.6 (4)
O4—Cd1—O2ii127.82 (8)N2—C24—H24118.7
N1—Cd1—O2ii94.27 (8)C23—C24—H24118.7
N2—Cd1—O2ii86.32 (8)O3—C14—O4121.7 (3)
O2i—Cd1—O2ii76.36 (8)O3—C14—C10120.2 (3)
O1ii—Cd1—O2ii53.28 (8)O4—C14—C10118.1 (3)
O4—Cd1—O353.83 (8)O3—C14—Cd166.77 (18)
N1—Cd1—O388.58 (8)O4—C14—Cd154.92 (16)
N2—Cd1—O386.12 (9)C10—C14—Cd1172.8 (2)
O2i—Cd1—O3113.01 (9)C11—C10—C9118.9 (3)
O1ii—Cd1—O3120.11 (10)C11—C10—C14119.8 (3)
O2ii—Cd1—O3170.56 (9)C9—C10—C14121.2 (3)
O4—Cd1—C1426.82 (9)C22—C23—C24119.6 (4)
N1—Cd1—C14111.54 (9)C22—C23—H23120.2
N2—Cd1—C14106.69 (10)C24—C23—H23120.2
O2i—Cd1—C14101.72 (9)C3—C2—C7119.8 (3)
O1ii—Cd1—C14104.46 (9)C3—C2—H2120.1
O2ii—Cd1—C14153.63 (9)C7—C2—H2120.1
O3—Cd1—C1427.01 (9)O1—C1—O2121.8 (3)
C14—O4—Cd198.26 (19)O1—C1—C7119.2 (3)
C1—O2—Cd1i129.8 (2)O2—C1—C7119.0 (3)
C1—O2—Cd1iii89.51 (19)C2—C3—C4120.0 (3)
Cd1i—O2—Cd1iii103.50 (8)C2—C3—H3120.0
C15—N1—C26118.5 (3)C4—C3—H3120.0
C15—N1—Cd1125.3 (2)C16—C17—C18120.0 (3)
C26—N1—Cd1116.2 (2)C16—C17—H17120.0
C24—N2—C25117.8 (3)C18—C17—H17120.0
C24—N2—Cd1126.5 (3)C3—C4—C5121.5 (3)
C25—N2—Cd1115.8 (2)C3—C4—H4119.2
C1—O1—Cd1iii95.4 (2)C5—C4—H4119.2
C14—O3—Cd186.2 (2)C17—C16—C15119.5 (4)
C13—C8—C9117.5 (3)C17—C16—H16120.2
C13—C8—C5121.0 (3)C15—C16—H16120.2
C9—C8—C5121.4 (3)C20—C19—C18120.7 (4)
C23—C22—C21119.9 (4)C20—C19—H19119.7
C23—C22—H22120.1C18—C19—H19119.7
C21—C22—H22120.1C10—C11—C12120.4 (4)
N1—C15—C16123.1 (4)C10—C11—H11119.8
N1—C15—H15118.5C12—C11—H11119.8
C16—C15—H15118.5C17—C18—C26117.4 (4)
C10—C9—C8122.1 (3)C17—C18—C19123.1 (4)
C10—C9—H9118.9C26—C18—C19119.5 (4)
C8—C9—H9118.9C8—C13—C12121.6 (4)
C7—C6—C5121.5 (3)C8—C13—H13119.2
C7—C6—H6119.3C12—C13—H13119.2
C5—C6—H6119.3C13—C12—C11119.3 (4)
N2—C25—C21122.8 (3)C13—C12—H12120.3
N2—C25—C26117.9 (3)C11—C12—H12120.3
C21—C25—C26119.4 (3)C19—C20—C21121.9 (4)
C2—C7—C6119.8 (3)C19—C20—H20119.0
C2—C7—C1120.3 (3)C21—C20—H20119.0
C6—C7—C1119.9 (3)
N1—Cd1—O4—C1445.0 (3)Cd1—N2—C24—C23177.4 (3)
N2—Cd1—O4—C1451.1 (2)Cd1—O3—C14—O40.5 (4)
O2i—Cd1—O4—C14120.7 (2)Cd1—O3—C14—C10178.2 (3)
O1ii—Cd1—O4—C14131.0 (2)Cd1—O4—C14—O30.5 (4)
O2ii—Cd1—O4—C14168.08 (19)Cd1—O4—C14—C10178.2 (3)
O3—Cd1—O4—C140.3 (2)O4—Cd1—C14—O3179.5 (4)
O4—Cd1—N1—C1560.5 (3)N1—Cd1—C14—O333.6 (3)
N2—Cd1—N1—C15178.5 (3)N2—Cd1—C14—O341.9 (2)
O2i—Cd1—N1—C1518.5 (2)O2i—Cd1—C14—O3118.2 (2)
O1ii—Cd1—N1—C15125.7 (3)O1ii—Cd1—C14—O3129.4 (2)
O2ii—Cd1—N1—C1593.9 (2)O2ii—Cd1—C14—O3158.9 (2)
O3—Cd1—N1—C1595.1 (2)N1—Cd1—C14—O4145.9 (2)
O4—Cd1—N1—C26118.5 (2)N2—Cd1—C14—O4138.5 (2)
N2—Cd1—N1—C262.46 (19)O2i—Cd1—C14—O461.3 (2)
O2i—Cd1—N1—C26162.5 (2)O1ii—Cd1—C14—O451.1 (2)
O1ii—Cd1—N1—C2655.2 (3)O2ii—Cd1—C14—O421.6 (3)
O2ii—Cd1—N1—C2687.1 (2)O3—Cd1—C14—O4179.5 (4)
O3—Cd1—N1—C2683.9 (2)O4—Cd1—C14—C1012.9 (19)
O4—Cd1—N2—C2451.3 (3)N1—Cd1—C14—C10158.8 (19)
N1—Cd1—N2—C24179.7 (3)N2—Cd1—C14—C10126 (2)
O2i—Cd1—N2—C24143.2 (3)O2i—Cd1—C14—C1074 (2)
O1ii—Cd1—N2—C2430.4 (3)O1ii—Cd1—C14—C1038 (2)
O2ii—Cd1—N2—C2483.9 (3)O2ii—Cd1—C14—C109 (2)
O3—Cd1—N2—C2490.5 (3)O3—Cd1—C14—C10168 (2)
O4—Cd1—N2—C25127.0 (2)C8—C9—C10—C111.4 (6)
N1—Cd1—N2—C252.0 (2)C8—C9—C10—C14176.3 (3)
O2i—Cd1—N2—C2538.5 (3)O3—C14—C10—C1112.1 (6)
O1ii—Cd1—N2—C25151.3 (2)O4—C14—C10—C11166.7 (4)
O2ii—Cd1—N2—C2597.8 (2)O3—C14—C10—C9170.2 (4)
O3—Cd1—N2—C2587.8 (2)O4—C14—C10—C911.0 (5)
O4—Cd1—O3—C140.3 (2)C21—C22—C23—C240.5 (6)
N1—Cd1—O3—C14149.0 (2)N2—C24—C23—C220.5 (6)
N2—Cd1—O3—C14140.1 (2)C6—C7—C2—C30.2 (6)
O2i—Cd1—O3—C1469.7 (2)C1—C7—C2—C3178.0 (4)
O1ii—Cd1—O3—C1459.9 (3)Cd1iii—O1—C1—O22.7 (4)
O2ii—Cd1—O3—C14103.3 (5)Cd1iii—O1—C1—C7174.9 (3)
C26—N1—C15—C160.1 (5)Cd1i—O2—C1—O1104.7 (4)
Cd1—N1—C15—C16178.9 (2)Cd1iii—O2—C1—O12.6 (4)
C13—C8—C9—C100.4 (5)Cd1i—O2—C1—C777.7 (4)
C5—C8—C9—C10176.5 (3)Cd1iii—O2—C1—C7175.0 (3)
C24—N2—C25—C210.3 (5)C2—C7—C1—O1163.1 (4)
Cd1—N2—C25—C21178.1 (2)C6—C7—C1—O118.7 (5)
C24—N2—C25—C26179.9 (3)C2—C7—C1—O214.6 (5)
Cd1—N2—C25—C261.5 (3)C6—C7—C1—O2163.6 (3)
C5—C6—C7—C21.8 (5)C7—C2—C3—C41.4 (6)
C5—C6—C7—C1176.4 (3)C2—C3—C4—C51.5 (6)
C7—C6—C5—C41.6 (5)C6—C5—C4—C30.0 (5)
C7—C6—C5—C8179.4 (3)C8—C5—C4—C3178.9 (4)
C13—C8—C5—C4149.9 (4)C18—C17—C16—C150.2 (5)
C9—C8—C5—C426.9 (5)N1—C15—C16—C170.1 (5)
C13—C8—C5—C629.0 (5)C9—C10—C11—C122.7 (8)
C9—C8—C5—C6154.2 (3)C14—C10—C11—C12175.1 (5)
C23—C22—C21—C251.0 (5)C16—C17—C18—C260.3 (5)
C23—C22—C21—C20179.4 (4)C16—C17—C18—C19179.5 (3)
N2—C25—C21—C220.6 (5)N1—C26—C18—C170.4 (5)
C26—C25—C21—C22179.0 (3)C25—C26—C18—C17178.1 (3)
N2—C25—C21—C20179.8 (3)N1—C26—C18—C19179.6 (3)
C26—C25—C21—C200.6 (5)C25—C26—C18—C191.1 (5)
C15—N1—C26—C180.3 (4)C20—C19—C18—C17178.4 (4)
Cd1—N1—C26—C18178.9 (2)C20—C19—C18—C260.7 (5)
C15—N1—C26—C25178.2 (3)C9—C8—C13—C120.7 (7)
Cd1—N1—C26—C252.7 (3)C5—C8—C13—C12176.2 (5)
N2—C25—C26—N10.8 (4)C8—C13—C12—C112.0 (10)
C21—C25—C26—N1179.6 (3)C10—C11—C12—C133.0 (10)
N2—C25—C26—C18179.3 (3)C18—C19—C20—C210.3 (6)
C21—C25—C26—C181.1 (4)C22—C21—C20—C19179.3 (4)
C25—N2—C24—C230.9 (5)C25—C21—C20—C190.2 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z1/2; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C14H8O4)(C12H8N2)]
Mr532.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)26.1947 (17), 9.7258 (5), 21.2247 (14)
β (°) 127.411 (1)
V3)4295.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.22 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.804, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
12984, 4902, 3799
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.04
No. of reflections4902
No. of parameters298
No. of restraints20
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported financially by the project of Shandong Province Higher Educational Science and Technology Program (grant No. J11LB56).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFurukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M. & Yaghi, O. M. (2008). J. Am. Chem. Soc. 130, 11650–11661.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQu, Z. (2007). Chin. J. Inorg. Chem. 23, 1837–1839.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, B.-Y. (2010). Acta Cryst. E66, m1214.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds