organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Decyl-6-nitro-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cDepartamento de Quimica Inorganica & Organica, E.S.T.C.E., Universitat Jaume I, E-12080 Castellon, Spain, dInstitut für Anorganische Chemie, J.W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ouzidan@yahoo.fr

(Received 27 September 2011; accepted 7 October 2011; online 12 October 2011)

The title mol­ecule, C17H25N3O3, is built up from fused six- and five-membered rings linked to a –C10H21 chain. The fused-ring system is essentially planar, the largest deviation from the mean plane being 0.009 (2) Å. The chain is roughly perpendic­ular to this plane, making a dihedral angle of 79.5 (2)°. In the crystal, N—H⋯O hydrogen bonds build infinite chains along [010]. There are channels in the structure containing disordered hexane. The contribution of this solvent to the scattering power was suppressed using the SQUEEZE option in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For the pharmacological and biochemical properties of related compounds, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]). For related structures, see Ouzidan et al. (2011a[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.],b[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362-o363.]).

[Scheme 1]

Experimental

Crystal data
  • C17H25N3O3

  • Mr = 319.40

  • Monoclinic, C 2/c

  • a = 32.9827 (6) Å

  • b = 4.55881 (9) Å

  • c = 29.3435 (5) Å

  • β = 109.481 (2)°

  • V = 4159.56 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.57 mm−1

  • T = 206 K

  • 0.15 × 0.11 × 0.05 mm

Data collection
  • Agilent SuperNova Dual (Cu at zero) Atlas diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011)[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.] based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.952, Tmax = 0.985

  • 20838 measured reflections

  • 4129 independent reflections

  • 3475 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.126

  • S = 1.09

  • 4129 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.88 2.743 (1) 178
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011)[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]; cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals and anti-cancers (Gravatt et al. 1994; Horton et al. 2003; Kim et al. 1996; Roth et al. 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we report in this paper the synthesis of a new benzimidazol-2-one derivative by action of 1-bromodecane with 5-nitro-1,3-dihydro-benzimidazol-2-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish the title compound (Scheme 1).

The molecular structure of 1-decyl-6-nitro-1,3-dihydro-benzimidazol-2-one is built up from two fused six-and five-membered rings linked to a C10H21 chain as schown in Fg.1. The fused rings are essentially planar, with maximum deviations of 0.008 (2) Å and -0.004 (2) Å for C2 and N1, respectively. The dihedral angle between them does not exceed 0.68 (7)°. The torsional angles C7–N2–C11–C12 and C17–C18–C19–C20 are -98.4 (2) ° and 176.7 (2)°, respectively. N1—H···O1 hydrogen bonds build up infinite one-dimensional chains along the [0 1 0] direction as shown in Fig.2 and Table 1.

Related literature top

For the pharmacological and biochemical properties of related compounds, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For related structures, see Ouzidan et al. (2011a,b). There are channels in the structure containing disordered hexane. The contribution of this solvent to the scattering power was suppressed using the SQUEEZE option in PLATON (Spek, 2009).

Experimental top

To 5-nitro-1,3-dihydro-benzimidazol-2-one (0.2 g, 1.1 mmol), potassium carbonate (0.30 g, 2.2 mmol) and tetra-n-butylammonium bromide (0.07 g, 0.2 mmol) in DMF (15 ml) was added 1-bromodecane (0.34 ml, 1.65 mmol). Stirring was continued at room temperature for 6 h. The precipitated salt was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate (yield: 27%).

Refinement top

There are channels in the structure containing disordered hexane. The contribution of this solvent to the scattering power was suppressed using the SQUEEZE option in PLATON (Spek, 2009) and the reflections were merged.

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å for all H atoms with Uiso(H) = 1.2 Ueq(aromatic, methine)and Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Packing diagram.
1-Decyl-6-nitro-1H-benzimidazol-2(3H)-one top
Crystal data top
C17H25N3O3F(000) = 1376
Mr = 319.40Dx = 1.020 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 8979 reflections
a = 32.9827 (6) Åθ = 2.8–73.1°
b = 4.55881 (9) ŵ = 0.57 mm1
c = 29.3435 (5) ÅT = 206 K
β = 109.481 (2)°Block, colourless
V = 4159.56 (13) Å30.15 × 0.11 × 0.05 mm
Z = 8
Data collection top
Agilent SuperNova Dual (Cu at zero) Atlas
diffractometer
4129 independent reflections
Radiation source: fine-focus sealed tube3475 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 0.4051 pixels mm-1θmax = 73.3°, θmin = 2.8°
ω scansh = 4040
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011) based on expressions derived by Clark & Reid (1995)]
k = 45
Tmin = 0.952, Tmax = 0.985l = 3636
20838 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.126H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.8537P]
where P = (Fo2 + 2Fc2)/3
4129 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H25N3O3V = 4159.56 (13) Å3
Mr = 319.40Z = 8
Monoclinic, C2/cCu Kα radiation
a = 32.9827 (6) ŵ = 0.57 mm1
b = 4.55881 (9) ÅT = 206 K
c = 29.3435 (5) Å0.15 × 0.11 × 0.05 mm
β = 109.481 (2)°
Data collection top
Agilent SuperNova Dual (Cu at zero) Atlas
diffractometer
4129 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011) based on expressions derived by Clark & Reid (1995)]
3475 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.985Rint = 0.029
20838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.09Δρmax = 0.16 e Å3
4129 reflectionsΔρmin = 0.17 e Å3
208 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. Clark & Reid (1995).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76316 (3)0.5176 (2)0.70158 (3)0.0389 (3)
H10.77270.46120.73120.047*
N20.72508 (3)0.7438 (2)0.63471 (3)0.0319 (2)
N30.80707 (4)0.2956 (3)0.53894 (4)0.0493 (3)
O10.70806 (3)0.8310 (2)0.70415 (3)0.0459 (3)
O20.83330 (4)0.1068 (3)0.53903 (4)0.0817 (4)
O30.78870 (3)0.4442 (2)0.50339 (3)0.0571 (3)
C10.77940 (3)0.4278 (3)0.66624 (4)0.0337 (3)
C20.75516 (3)0.5736 (3)0.62357 (4)0.0304 (3)
C30.76366 (3)0.5367 (3)0.58100 (4)0.0341 (3)
H30.74820.63410.55270.041*
C40.79688 (4)0.3445 (3)0.58314 (4)0.0384 (3)
C50.82078 (4)0.1954 (3)0.62471 (5)0.0451 (3)
H50.84250.06760.62400.054*
C60.81208 (4)0.2379 (3)0.66730 (4)0.0433 (3)
H60.82780.14130.69560.052*
C70.72984 (3)0.7087 (3)0.68291 (4)0.0350 (3)
C110.69093 (3)0.9198 (3)0.60136 (4)0.0325 (3)
H11A0.70261.02760.58000.039*
H11B0.68061.06130.61970.039*
C120.65344 (3)0.7327 (3)0.57121 (4)0.0342 (3)
H12A0.64180.62470.59250.041*
H12B0.66370.59150.55290.041*
C130.61786 (4)0.9169 (3)0.53654 (4)0.0355 (3)
H13A0.60631.04900.55510.043*
H13B0.63001.03520.51680.043*
C140.58145 (4)0.7315 (3)0.50369 (4)0.0380 (3)
H14A0.56910.61550.52350.046*
H14B0.59310.59700.48560.046*
C150.54594 (4)0.9122 (3)0.46821 (4)0.0403 (3)
H15A0.55841.03100.44880.048*
H15B0.53391.04420.48630.048*
C160.50987 (4)0.7262 (3)0.43470 (5)0.0409 (3)
H16A0.52200.59270.41700.049*
H16B0.49730.60890.45410.049*
C170.47449 (4)0.9044 (3)0.39880 (5)0.0417 (3)
H17A0.46111.02870.41650.050*
H17B0.48731.03110.38080.050*
C180.43994 (4)0.7188 (3)0.36328 (5)0.0444 (3)
H18A0.45350.58840.34660.053*
H18B0.42630.59820.38120.053*
C190.40558 (4)0.8947 (3)0.32606 (5)0.0530 (4)
H19A0.39081.01710.34260.064*
H19B0.41931.02330.30920.064*
C200.37271 (5)0.7073 (4)0.28924 (6)0.0673 (5)
H20A0.35280.83150.26590.101*
H20B0.35750.58940.30530.101*
H20C0.38710.58200.27320.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0368 (5)0.0594 (7)0.0176 (4)0.0018 (5)0.0051 (3)0.0043 (4)
N20.0304 (4)0.0432 (6)0.0192 (4)0.0013 (4)0.0046 (3)0.0007 (4)
N30.0505 (6)0.0633 (8)0.0392 (6)0.0032 (6)0.0218 (5)0.0011 (5)
O10.0411 (4)0.0714 (7)0.0241 (4)0.0004 (4)0.0095 (3)0.0087 (4)
O20.0945 (9)0.1005 (10)0.0648 (7)0.0446 (8)0.0461 (7)0.0090 (7)
O30.0644 (6)0.0789 (8)0.0333 (5)0.0066 (5)0.0236 (4)0.0067 (5)
C10.0310 (5)0.0458 (7)0.0217 (5)0.0058 (5)0.0051 (4)0.0020 (4)
C20.0287 (5)0.0372 (6)0.0228 (5)0.0059 (4)0.0054 (4)0.0003 (4)
C30.0357 (5)0.0422 (7)0.0227 (5)0.0028 (5)0.0075 (4)0.0027 (4)
C40.0390 (6)0.0479 (7)0.0299 (6)0.0012 (5)0.0137 (5)0.0006 (5)
C50.0398 (6)0.0542 (8)0.0399 (6)0.0078 (6)0.0115 (5)0.0037 (6)
C60.0393 (6)0.0544 (8)0.0312 (6)0.0046 (6)0.0050 (5)0.0098 (5)
C70.0316 (5)0.0510 (7)0.0199 (5)0.0082 (5)0.0052 (4)0.0048 (5)
C110.0329 (5)0.0361 (6)0.0251 (5)0.0005 (5)0.0050 (4)0.0008 (4)
C120.0330 (6)0.0345 (6)0.0299 (5)0.0011 (5)0.0037 (4)0.0006 (5)
C130.0330 (5)0.0337 (7)0.0341 (6)0.0002 (5)0.0037 (4)0.0001 (5)
C140.0349 (6)0.0345 (7)0.0366 (6)0.0005 (5)0.0013 (5)0.0007 (5)
C150.0350 (6)0.0365 (7)0.0403 (6)0.0008 (5)0.0003 (5)0.0010 (5)
C160.0367 (6)0.0362 (7)0.0403 (6)0.0005 (5)0.0000 (5)0.0011 (5)
C170.0366 (6)0.0381 (7)0.0413 (6)0.0013 (5)0.0006 (5)0.0014 (5)
C180.0372 (6)0.0414 (7)0.0436 (7)0.0011 (5)0.0011 (5)0.0024 (5)
C190.0447 (7)0.0489 (9)0.0499 (7)0.0060 (6)0.0050 (6)0.0026 (6)
C200.0483 (8)0.0687 (11)0.0608 (9)0.0079 (7)0.0140 (7)0.0078 (8)
Geometric parameters (Å, º) top
N1—C71.3659 (16)C13—C141.5208 (15)
N1—C11.3785 (15)C13—H13A0.9700
N1—H10.8600C13—H13B0.9700
N2—C71.3793 (13)C14—C151.5235 (15)
N2—C21.3819 (15)C14—H14A0.9700
N2—C111.4612 (14)C14—H14B0.9700
N3—O21.2198 (16)C15—C161.5235 (16)
N3—O31.2218 (15)C15—H15A0.9700
N3—C41.4612 (15)C15—H15B0.9700
O1—C71.2304 (14)C16—C171.5201 (16)
C1—C61.3745 (18)C16—H16A0.9700
C1—C21.4077 (15)C16—H16B0.9700
C2—C31.3789 (14)C17—C181.5194 (16)
C3—C41.3879 (17)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C4—C51.3890 (17)C18—C191.5148 (17)
C5—C61.3862 (18)C18—H18A0.9700
C5—H50.9300C18—H18B0.9700
C6—H60.9300C19—C201.5138 (19)
C11—C121.5197 (15)C19—H19A0.9700
C11—H11A0.9700C19—H19B0.9700
C11—H11B0.9700C20—H20A0.9600
C12—C131.5234 (15)C20—H20B0.9600
C12—H12A0.9700C20—H20C0.9600
C12—H12B0.9700
C7—N1—C1110.52 (9)C14—C13—H13B109.0
C7—N1—H1124.7C12—C13—H13B109.0
C1—N1—H1124.7H13A—C13—H13B107.8
C7—N2—C2109.41 (9)C13—C14—C15113.41 (10)
C7—N2—C11123.32 (9)C13—C14—H14A108.9
C2—N2—C11127.13 (8)C15—C14—H14A108.9
O2—N3—O3122.85 (11)C13—C14—H14B108.9
O2—N3—C4118.60 (11)C15—C14—H14B108.9
O3—N3—C4118.55 (11)H14A—C14—H14B107.7
C6—C1—N1131.94 (10)C14—C15—C16113.39 (10)
C6—C1—C2121.76 (10)C14—C15—H15A108.9
N1—C1—C2106.31 (10)C16—C15—H15A108.9
C3—C2—N2131.46 (10)C14—C15—H15B108.9
C3—C2—C1121.41 (10)C16—C15—H15B108.9
N2—C2—C1107.12 (9)H15A—C15—H15B107.7
C2—C3—C4115.61 (10)C17—C16—C15113.80 (10)
C2—C3—H3122.2C17—C16—H16A108.8
C4—C3—H3122.2C15—C16—H16A108.8
C3—C4—C5123.84 (11)C17—C16—H16B108.8
C3—C4—N3117.89 (10)C15—C16—H16B108.8
C5—C4—N3118.28 (12)H16A—C16—H16B107.7
C6—C5—C4119.74 (12)C18—C17—C16113.88 (10)
C6—C5—H5120.1C18—C17—H17A108.8
C4—C5—H5120.1C16—C17—H17A108.8
C1—C6—C5117.64 (11)C18—C17—H17B108.8
C1—C6—H6121.2C16—C17—H17B108.8
C5—C6—H6121.2H17A—C17—H17B107.7
O1—C7—N1127.86 (10)C19—C18—C17114.19 (11)
O1—C7—N2125.50 (11)C19—C18—H18A108.7
N1—C7—N2106.64 (9)C17—C18—H18A108.7
N2—C11—C12112.17 (10)C19—C18—H18B108.7
N2—C11—H11A109.2C17—C18—H18B108.7
C12—C11—H11A109.2H18A—C18—H18B107.6
N2—C11—H11B109.2C20—C19—C18113.67 (12)
C12—C11—H11B109.2C20—C19—H19A108.8
H11A—C11—H11B107.9C18—C19—H19A108.8
C11—C12—C13112.06 (10)C20—C19—H19B108.8
C11—C12—H12A109.2C18—C19—H19B108.8
C13—C12—H12A109.2H19A—C19—H19B107.7
C11—C12—H12B109.2C19—C20—H20A109.5
C13—C12—H12B109.2C19—C20—H20B109.5
H12A—C12—H12B107.9H20A—C20—H20B109.5
C14—C13—C12112.76 (10)C19—C20—H20C109.5
C14—C13—H13A109.0H20A—C20—H20C109.5
C12—C13—H13A109.0H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.882.743 (1)178
Symmetry code: (i) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H25N3O3
Mr319.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)206
a, b, c (Å)32.9827 (6), 4.55881 (9), 29.3435 (5)
β (°) 109.481 (2)
V3)4159.56 (13)
Z8
Radiation typeCu Kα
µ (mm1)0.57
Crystal size (mm)0.15 × 0.11 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual (Cu at zero) Atlas
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2011) based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.952, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
20838, 4129, 3475
Rint0.029
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.126, 1.09
No. of reflections4129
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.882.743 (1)178.2
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362–o363.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds