organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-benzoyl­indolizine-1-carboxyl­ate

aDepartment of Applied Chemistry, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Research Center of Biomedical Functional Materials Engineering, Nanjing Normal University, Nanjing 210097, People's Republic of China
*Correspondence e-mail: wang.bingxiang@yahoo.com

(Received 6 October 2011; accepted 16 October 2011; online 29 October 2011)

The title compound, C18H15NO3, consists of an indolizine ring system and an aromatic ring. The two ring systems are not coplanar, the dihedral angle between the two being 54.26 (7)°. In the crystal, inversion dimers are formed by weak C—H⋯O interactions. These dimeric groups are further extended to form a regular two-dimensional structure by additional weak C—H⋯O inter­actions.

Related literature

For background information on indolizine and its derivatives, see: Tukulula et al. (2010[Tukulula, M., Klein, R. & Kaye, P. T. (2010). Synth. Commun. 40, 2018-2028.]); James et al. (2008[James, D. A., Koya, K., Li, H., Liang, G. Q., Xia, Z. Q., Ying, W. W., Wu, Y. M. & Sun, L. J. (2008). Bioorg. Med. Chem. Lett. 18, 1784-1787.]); Teklu et al. (2005[Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Med. Chem. 13, 3127-3139.]); Shen et al. (2008[Shen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916-918.], 2006[Shen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651-653.]). For the synthesis of the title compound, see: Wang et al. (2000[Wang, B.-X., Hu, J.-X., Zhang, X.-C., Hu, Y.-F. & Hu, H.-W. (2000). J. Heterocycl. Chem. 37, 1533-1537.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO3

  • Mr = 293.31

  • Monoclinic, P 21 /c

  • a = 10.030 (2) Å

  • b = 19.223 (3) Å

  • c = 7.9652 (17) Å

  • β = 103.073 (3)°

  • V = 1495.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.984

  • 8910 measured reflections

  • 2604 independent reflections

  • 1604 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.129

  • S = 1.00

  • 2604 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.45 3.163 (3) 134
C14—H14⋯O3ii 0.93 2.58 3.455 (3) 157
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indolizine and it's derivatives have been comprehensively applied in biology and medicine due to their particular structures (Tukulula et al., 2010; James et al., 2008; Teklu et al., 2005). They can also be used as organic fluorescence probes (Shen et al., 2008; Shen et al., 2006). In our continuing studies in organic fluorescence probes, we synthesized the ethyl-3-benzoylindolizine-1-carboxylate (I).

The crystal structure of the title compound, C18H15NO3, reveals that all bond lengths and angles have normal values (Table 1 and 2). In the asymmetric unit there is one title compound molecule. The molecular structure consists of one indolizine ring A (C1—C8/N) and an aromatic ring B(C10—C15) (Fig. 1). Rings A and ring B are not coplanar with the dihedral angle between them being 54.26 (7) °.

In the crystal packing there are weak C1—H1···O1i (i: 1 - x,-y,2 - z) interactions between neighbouring molecules forming dimeric groups (Fig. 2). These dimeric groups are further extended into a tegular 2-D structure via weak C14—H14···O3ii (ii: -x,-1/2 + y,0.5 - z) interactions (Fig. 2).

Related literature top

For background information on indolizine and its derivatives, see: Tukulula et al. (2010); James et al. (2008); Teklu et al. (2005); Shen et al. (2008, 2006). For the synthesis of the title compound, see: Wang et al. (2000).

Experimental top

Ethyl-3-benzoylindolizine-1-carboxylate was prepared by 1,3-dipolar cycloaddition according to a procedure described in the literature (Wang, et al., 2000). A suspension of N-(benzoylmethyl)pyridinium bromide (C5H5N+–CH2COC6H5 Br-) (10 mmol), ethyl acrylate (40 mmol), Et3N (20 ml) and CrO3 (20 mmol) in DMF (40 ml) was stirred at 90°C for 2 h (monitored by TLC). The mixture was then cooled to room temperature and poured into 5% aqueous HCl (200 mL). The mixture was extracted with CH2Cl2 (2 times 50 mL) and the combined extracts were washed with water (2 times 50 mL) and dried over Na2SO4. The solvent was removed to give a solid, which was purified by chromatography [silica gel, 20% ethyl acetate in light petroleum (b.p. 60–90°C)] to yield 1.90 g (68%) (I). Yellow crystals were obtained by recrystallization from ethyl acetate at room temperature.

H-NMR (CDCl3, 400 MHz) δ: 1.41 (t, 3H, CH3), 4.38 (q, 2H, CH2), 7.10 (t, 1H, H6), 7.44–7.84 (m, 7H, H7, H2 and PhH), 8.39 (d, 1H, H8), 9.98 (d, 1H, H5).

Refinement top

The H atoms were placed in calculated positions and included as part of a riding model, with C—H = 0.93–0.97 Å, and with Uequiv values set at 1.2–1.5 Uequiv of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A view of the 2-D structure down c axis (i: 1 - x,-y,2 - z; ii: -x,-1/2 + y,0.5 - z).
Ethyl 3-benzoylindolizine-1-carboxylate top
Crystal data top
C18H15NO3F(000) = 616
Mr = 293.31Dx = 1.302 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1073 reflections
a = 10.030 (2) Åθ = 2.3–19.4°
b = 19.223 (3) ŵ = 0.09 mm1
c = 7.9652 (17) ÅT = 291 K
β = 103.073 (3)°Block, yellow
V = 1495.9 (5) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2604 independent reflections
Radiation source: sealed tube1604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.979, Tmax = 0.984k = 2220
8910 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0588P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.010
2604 reflectionsΔρmax = 0.18 e Å3
201 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C18H15NO3V = 1495.9 (5) Å3
Mr = 293.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.030 (2) ŵ = 0.09 mm1
b = 19.223 (3) ÅT = 291 K
c = 7.9652 (17) Å0.24 × 0.20 × 0.18 mm
β = 103.073 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2604 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1604 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.057
8910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
2604 reflectionsΔρmin = 0.15 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.2801 (0.0047) x + 9.1394 (0.0112) y - 3.8457 (0.0039) z = 0.2003 (0.0031)

* 0.0099 (0.0018) C1 * 0.0019 (0.0019) C2 * -0.0097 (0.0019) C3 * -0.0087 (0.0017) C4 * 0.0066 (0.0018) C5 * 0.0165 (0.0017) C6 * -0.0108 (0.0017) C7 * -0.0130 (0.0017) C8 * 0.0072 (0.0016) N1

Rms deviation of fitted atoms = 0.0101

- 0.9358 (0.0101) x - 10.1188 (0.0159) y + 6.7251 (0.0044) z = 4.3984 (0.0037)

Angle to previous plane (with approximate e.s.d.) = 54.26 (0.07)

* -0.0091 (0.0016) C10 * 0.0153 (0.0017) C11 * -0.0081 (0.0018) C12 * -0.0053 (0.0019) C13 * 0.0114 (0.0018) C14 * -0.0042 (0.0016) C15

Rms deviation of fitted atoms = 0.0097

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3367 (2)0.08044 (12)0.8614 (3)0.0535 (7)
H10.40050.04940.92310.064*
C20.3057 (3)0.13943 (12)0.9370 (3)0.0620 (7)
H20.34830.14901.05090.074*
C30.2092 (3)0.18631 (13)0.8436 (3)0.0613 (7)
H30.18800.22670.89630.074*
C40.1464 (2)0.17291 (11)0.6764 (3)0.0501 (6)
H40.08250.20410.61540.060*
C50.1782 (2)0.11209 (10)0.5963 (3)0.0426 (6)
C60.1348 (2)0.08293 (10)0.4309 (3)0.0445 (6)
C70.2020 (2)0.02004 (11)0.4333 (3)0.0477 (6)
H70.19060.01040.34030.057*
C80.2880 (2)0.00854 (10)0.5917 (3)0.0449 (6)
C90.3887 (2)0.04547 (11)0.6464 (3)0.0473 (6)
C100.3774 (2)0.10994 (10)0.5398 (3)0.0411 (6)
C110.4968 (3)0.13982 (12)0.5151 (3)0.0536 (7)
H110.58080.11920.56260.064*
C120.4918 (3)0.20014 (12)0.4201 (4)0.0670 (8)
H120.57220.21910.40020.080*
C130.3690 (3)0.23235 (13)0.3550 (3)0.0674 (8)
H130.36620.27320.29170.081*
C140.2502 (3)0.20418 (12)0.3833 (3)0.0611 (7)
H140.16710.22650.34140.073*
C150.2542 (2)0.14261 (11)0.4742 (3)0.0497 (6)
H150.17340.12310.49120.060*
C160.0427 (2)0.11668 (12)0.2879 (3)0.0496 (6)
C170.0756 (3)0.10378 (13)0.0047 (3)0.0640 (7)
H17A0.05120.08560.10730.077*
H17B0.06800.15410.00660.077*
C180.2186 (3)0.08400 (16)0.0048 (4)0.0880 (10)
H18A0.22520.03430.00150.132*
H18B0.27850.10030.10890.132*
H18C0.24460.10460.09280.132*
N10.27358 (18)0.06663 (9)0.6934 (2)0.0438 (5)
O10.48475 (18)0.03908 (9)0.7719 (2)0.0698 (5)
O20.01794 (18)0.07657 (8)0.1471 (2)0.0672 (5)
O30.00443 (17)0.17415 (8)0.2920 (2)0.0662 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0636 (17)0.0482 (14)0.0423 (14)0.0019 (12)0.0016 (12)0.0008 (11)
C20.080 (2)0.0534 (15)0.0490 (16)0.0019 (14)0.0082 (14)0.0108 (13)
C30.0735 (19)0.0484 (15)0.0631 (18)0.0056 (13)0.0175 (15)0.0091 (13)
C40.0506 (15)0.0421 (13)0.0576 (17)0.0043 (11)0.0123 (13)0.0015 (12)
C50.0403 (14)0.0374 (12)0.0488 (14)0.0011 (10)0.0075 (12)0.0033 (11)
C60.0471 (15)0.0389 (12)0.0440 (14)0.0024 (11)0.0033 (11)0.0009 (11)
C70.0532 (16)0.0408 (13)0.0445 (15)0.0015 (11)0.0015 (12)0.0058 (10)
C80.0510 (15)0.0372 (12)0.0431 (14)0.0017 (11)0.0035 (12)0.0031 (10)
C90.0464 (15)0.0434 (13)0.0485 (15)0.0003 (11)0.0028 (13)0.0015 (11)
C100.0458 (15)0.0342 (12)0.0406 (13)0.0014 (11)0.0040 (11)0.0066 (10)
C110.0483 (16)0.0473 (14)0.0643 (17)0.0002 (12)0.0109 (13)0.0001 (12)
C120.0695 (19)0.0521 (16)0.084 (2)0.0083 (14)0.0271 (16)0.0052 (15)
C130.084 (2)0.0468 (15)0.0695 (19)0.0001 (16)0.0127 (17)0.0128 (13)
C140.0613 (18)0.0481 (15)0.0678 (18)0.0107 (13)0.0020 (14)0.0026 (13)
C150.0471 (16)0.0444 (13)0.0550 (16)0.0025 (11)0.0061 (13)0.0017 (12)
C160.0505 (16)0.0441 (14)0.0505 (16)0.0011 (12)0.0037 (12)0.0040 (12)
C170.069 (2)0.0711 (17)0.0429 (15)0.0018 (15)0.0064 (14)0.0072 (13)
C180.072 (2)0.113 (2)0.074 (2)0.0102 (18)0.0051 (17)0.0196 (18)
N10.0485 (12)0.0381 (10)0.0412 (11)0.0003 (9)0.0027 (9)0.0013 (8)
O10.0645 (12)0.0669 (12)0.0635 (12)0.0164 (9)0.0162 (10)0.0144 (9)
O20.0783 (13)0.0639 (11)0.0487 (11)0.0165 (9)0.0083 (9)0.0023 (9)
O30.0722 (13)0.0488 (10)0.0679 (13)0.0143 (9)0.0041 (10)0.0056 (9)
Geometric parameters (Å, º) top
C1—C21.353 (3)C10—C111.382 (3)
C1—N11.370 (3)C11—C121.379 (3)
C1—H10.9300C11—H110.9300
C2—C31.406 (3)C12—C131.372 (3)
C2—H20.9300C12—H120.9300
C3—C41.363 (3)C13—C141.373 (3)
C3—H30.9300C13—H130.9300
C4—C51.403 (3)C14—C151.383 (3)
C4—H40.9300C14—H140.9300
C5—N11.393 (3)C15—H150.9300
C5—C61.407 (3)C16—O31.205 (3)
C6—C71.382 (3)C16—O21.337 (3)
C6—C161.448 (3)C17—O21.450 (3)
C7—C81.376 (3)C17—C181.484 (3)
C7—H70.9300C17—H17A0.9700
C8—N11.406 (2)C17—H17B0.9700
C8—C91.445 (3)C18—H18A0.9600
C9—O11.228 (3)C18—H18B0.9600
C9—C101.492 (3)C18—H18C0.9600
C10—C151.379 (3)
C2—C1—N1119.7 (2)C10—C11—H11119.9
C2—C1—H1120.2C13—C12—C11120.4 (2)
N1—C1—H1120.2C13—C12—H12119.8
C1—C2—C3120.1 (2)C11—C12—H12119.8
C1—C2—H2119.9C12—C13—C14119.9 (2)
C3—C2—H2119.9C12—C13—H13120.1
C4—C3—C2120.4 (2)C14—C13—H13120.1
C4—C3—H3119.8C13—C14—C15120.0 (2)
C2—C3—H3119.8C13—C14—H14120.0
C3—C4—C5120.0 (2)C15—C14—H14120.0
C3—C4—H4120.0C10—C15—C14120.3 (2)
C5—C4—H4120.0C10—C15—H15119.8
N1—C5—C4117.9 (2)C14—C15—H15119.8
N1—C5—C6107.35 (18)O3—C16—O2123.5 (2)
C4—C5—C6134.7 (2)O3—C16—C6125.0 (2)
C7—C6—C5106.80 (19)O2—C16—C6111.5 (2)
C7—C6—C16128.7 (2)O2—C17—C18110.6 (2)
C5—C6—C16124.45 (19)O2—C17—H17A109.5
C8—C7—C6110.83 (19)C18—C17—H17A109.5
C8—C7—H7124.6O2—C17—H17B109.5
C6—C7—H7124.6C18—C17—H17B109.5
C7—C8—N1106.01 (18)H17A—C17—H17B108.1
C7—C8—C9129.9 (2)C17—C18—H18A109.5
N1—C8—C9123.6 (2)C17—C18—H18B109.5
O1—C9—C8122.7 (2)H18A—C18—H18B109.5
O1—C9—C10119.4 (2)C17—C18—H18C109.5
C8—C9—C10117.9 (2)H18A—C18—H18C109.5
C15—C10—C11119.2 (2)H18B—C18—H18C109.5
C15—C10—C9122.7 (2)C1—N1—C5121.86 (18)
C11—C10—C9118.0 (2)C1—N1—C8129.14 (19)
C12—C11—C10120.2 (2)C5—N1—C8109.00 (18)
C12—C11—H11119.9C16—O2—C17116.98 (18)
N1—C1—C2—C30.0 (4)C10—C11—C12—C132.4 (4)
C1—C2—C3—C40.2 (4)C11—C12—C13—C140.5 (4)
C2—C3—C4—C50.1 (4)C12—C13—C14—C151.4 (4)
C3—C4—C5—N10.6 (3)C11—C10—C15—C140.6 (3)
C3—C4—C5—C6179.7 (2)C9—C10—C15—C14176.8 (2)
N1—C5—C6—C71.5 (2)C13—C14—C15—C101.3 (4)
C4—C5—C6—C7178.2 (2)C7—C6—C16—O3174.1 (2)
N1—C5—C6—C16175.5 (2)C5—C6—C16—O32.2 (4)
C4—C5—C6—C164.8 (4)C7—C6—C16—O24.5 (3)
C5—C6—C7—C81.1 (3)C5—C6—C16—O2179.2 (2)
C16—C6—C7—C8175.7 (2)C2—C1—N1—C50.5 (3)
C6—C7—C8—N10.3 (3)C2—C1—N1—C8178.6 (2)
C6—C7—C8—C9172.0 (2)C4—C5—N1—C10.8 (3)
C7—C8—C9—O1157.9 (2)C6—C5—N1—C1179.45 (18)
N1—C8—C9—O113.2 (4)C4—C5—N1—C8178.43 (18)
C7—C8—C9—C1019.2 (4)C6—C5—N1—C81.3 (2)
N1—C8—C9—C10169.63 (18)C7—C8—N1—C1179.8 (2)
O1—C9—C10—C15139.8 (2)C9—C8—N1—C17.3 (3)
C8—C9—C10—C1543.0 (3)C7—C8—N1—C50.6 (2)
O1—C9—C10—C1136.4 (3)C9—C8—N1—C5173.6 (2)
C8—C9—C10—C11140.8 (2)O3—C16—O2—C172.7 (3)
C15—C10—C11—C122.5 (3)C6—C16—O2—C17178.65 (19)
C9—C10—C11—C12178.8 (2)C18—C17—O2—C1689.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.453.163 (3)134
C14—H14···O3ii0.932.583.455 (3)157
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H15NO3
Mr293.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.030 (2), 19.223 (3), 7.9652 (17)
β (°) 103.073 (3)
V3)1495.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8910, 2604, 1604
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 1.00
No. of reflections2604
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.453.163 (3)134
C14—H14···O3ii0.932.583.455 (3)157
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

We thank the Natural Science Foundation of Jiangsu Province of China (grant No. BK2008435) and the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJames, D. A., Koya, K., Li, H., Liang, G. Q., Xia, Z. Q., Ying, W. W., Wu, Y. M. & Sun, L. J. (2008). Bioorg. Med. Chem. Lett. 18, 1784–1787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651–653.  CAS Google Scholar
First citationShen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916–918.  CAS Google Scholar
First citationTeklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Med. Chem. 13, 3127–3139.  CrossRef CAS Google Scholar
First citationTukulula, M., Klein, R. & Kaye, P. T. (2010). Synth. Commun. 40, 2018–2028.  Web of Science CrossRef CAS Google Scholar
First citationWang, B.-X., Hu, J.-X., Zhang, X.-C., Hu, Y.-F. & Hu, H.-W. (2000). J. Heterocycl. Chem. 37, 1533–1537.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds