organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Hy­dr­oxy­phen­yl)-3,4,5-trimeth­­oxy­benzamide

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 30 September 2011; accepted 3 October 2011; online 8 October 2011)

In the title amide compound, C16H17NO5, the dihedral angle between the benzene rings is 71.59 (4)°. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional array parallel to the ab plane.

Related literature

For general background to tyrosinase and melanin, see: Kubo et al. (2000[Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749-1755.]); Nerya et al. (2004[Nerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389-1395.]). For the development of potent inhibitory agents of tyrosinase, see: Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]); Casanola-Martin et al. (2006[Casanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324-330.]); Thanigaimalai et al. (2010[Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991-2993.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO5

  • Mr = 303.31

  • Orthorhombic, P b c a

  • a = 10.4280 (5) Å

  • b = 13.4075 (6) Å

  • c = 21.5565 (8) Å

  • V = 3013.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.1 mm−1

  • T = 296 K

  • 0.23 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 14730 measured reflections

  • 3459 independent reflections

  • 2086 reflections with I > 2σ(I)

  • Rint = 0.130

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.134

  • S = 0.97

  • 3459 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O17i 0.87 (2) 2.18 (2) 3.029 (2) 165.8 (17)
O16—H16⋯O8ii 0.88 (4) 1.84 (4) 2.710 (2) 172 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tyrosinase, a multi functional copper containing enzyme, is widely distributed in the plant and animal kingdom. It is responsible for catalyzing ortho-hydroxylation of phenols and ortho-phenol oxidation to corresponding quinones (Kubo et al., 2000). This enzyme was not only responsible for the browning of fruits and vegetables but also caused some dermatological problems such as flecks and melasma due to overproduction of melanin (Nerya et al., 2004). Numerous potential tyrosinase inhibitors have been discovered from natural and synthetic sources, such as a kojic acid (Cabanes et al., 1994), arbutin (Casanola-Martin et al., 2006) and phenylthiourea (Thanigaimalai et al., 2010). But some these inhibitors suffer from number of limitations, such as low activity and high toxicity. we have synthesized the title compound, (I), from the reaction of 3,4,5-trimethoxybenzoyl chloride and 4-aminophenol under ambient conditions. Herein, the crystal structure of (I) is described (Fig. 1).

The 3,4,5-trimethoxybenzoic acid moiety and 4-aminophenol group are essentially planar, with a mean deviation of 0.031 and 0.036 Å, respectively, from the corresponding least-squares plane defined by the ten and eight, respectively, constituent atoms. The dihedral angle between the benzene rings is 71.59 (4)°. The intermolecular N9—H9···O17i and O16—H16···O8ii [symmetry codes: (i) -x + 1/2, y - 1/2, z; (ii) -x - 1/2, y - 1/2, z; Table 1] hydrogen bonds allow to form an extensive two-dimensional network parallel to the ab plane (Fig. 2), which stabilizes the crystal structure.

Related literature top

For general background to tyrosinase and melanin, see: Kubo et al. (2000); Nerya et al. (2004). For the development of potent inhibitory agents of tyrosinase, see: Cabanes et al. (1994); Casanola-Martin et al. (2006); Thanigaimalai et al. (2010).

Experimental top

The 3,4,5-trimethoxybenzoyl chloride and 4-aminophenol were purchased from Sigma Chemical Co. Solvents for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound was prepared from the reaction of 3,4,5-trimethoxybenzoyl chloride (0.5 g, 1.0 mmol) and 4-aminophenol (0.4 g, 1.2 mmol) by simple substitution in THF(6 ml) with triethylamine (0.22 g, 1.2 mmol). The solvent was removed under reduced pressure. The mixture compound were purified by column chromatography on silica gel (2:1 dichloromethane/ethylacetate) to give the title compound (69%, m.p. 504 K). Colourless crystals of (I) were obtained from its ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

Atoms H9 and H16 of the NH and OH groups were located in a difference Fourier map and refined freely [refined distances: N—H = 0.87 (2) Å and O—H = 0.88 (4) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2Ueq (carrier C) for aromatic or 1.5Ueq(carrier C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A molecular view of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing a two-dimensional network of molecules linked by intermolecular N—H···O and O—H···O hydrogen bonds (dashed lines).
N-(4-Hydroxyphenyl)-3,4,5-trimethoxybenzamide top
Crystal data top
C16H17NO5F(000) = 1280
Mr = 303.31Dx = 1.337 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3298 reflections
a = 10.4280 (5) Åθ = 2.7–25.0°
b = 13.4075 (6) ŵ = 0.1 mm1
c = 21.5565 (8) ÅT = 296 K
V = 3013.9 (2) Å3Block, colourless
Z = 80.23 × 0.16 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.130
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ϕ and ω scansh = 1310
14730 measured reflectionsk = 1417
3459 independent reflectionsl = 1127
2086 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0597P)2]
where P = (Fo2 + 2Fc2)/3
3459 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H17NO5V = 3013.9 (2) Å3
Mr = 303.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.4280 (5) ŵ = 0.1 mm1
b = 13.4075 (6) ÅT = 296 K
c = 21.5565 (8) Å0.23 × 0.16 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2086 reflections with I > 2σ(I)
14730 measured reflectionsRint = 0.130
3459 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.23 e Å3
3459 reflectionsΔρmin = 0.29 e Å3
207 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09766 (17)0.55474 (11)0.38891 (8)0.0352 (4)
C20.09088 (17)0.65316 (11)0.36913 (8)0.0352 (4)
H20.03670.6710.33670.042*
C30.16570 (17)0.72450 (11)0.39825 (8)0.0330 (4)
C40.24487 (18)0.69932 (11)0.44779 (8)0.0355 (4)
C50.2478 (2)0.60042 (11)0.46863 (8)0.0387 (4)
C60.17580 (19)0.52861 (12)0.43820 (8)0.0391 (5)
H60.180.46240.4510.047*
C70.01230 (19)0.48017 (12)0.35789 (8)0.0379 (4)
O80.09130 (14)0.50472 (9)0.33584 (7)0.0557 (4)
N90.05744 (18)0.38648 (10)0.35655 (8)0.0435 (4)
H90.139 (2)0.3796 (14)0.3652 (9)0.058 (7)*
C100.00908 (19)0.29931 (12)0.33568 (8)0.0376 (4)
C110.06275 (19)0.22529 (12)0.30716 (8)0.0407 (4)
H110.1490.2360.29860.049*
C120.0057 (2)0.13529 (12)0.29149 (8)0.0421 (5)
H120.05440.08540.2730.051*
C130.1220 (2)0.11949 (12)0.30309 (8)0.0417 (5)
C140.1944 (2)0.19343 (13)0.33081 (9)0.0469 (5)
H140.28120.18310.33830.056*
C150.1375 (2)0.28301 (13)0.34741 (9)0.0471 (5)
H150.18620.33240.36650.057*
O160.17129 (17)0.02840 (9)0.28685 (8)0.0596 (5)
H160.251 (4)0.023 (2)0.2997 (14)0.116 (12)*
O170.16842 (13)0.82370 (8)0.38183 (6)0.0436 (3)
C180.0830 (3)0.85680 (15)0.33432 (11)0.0723 (7)
H18A0.09510.92690.32740.108*
H18B0.00390.84470.34690.108*
H18C0.10040.8210.29670.108*
O190.30929 (14)0.77608 (8)0.47554 (6)0.0524 (4)
C200.4380 (2)0.76199 (16)0.49453 (12)0.0715 (7)
H20A0.46980.82240.51280.107*
H20B0.48960.7450.45920.107*
H20C0.44190.7090.52440.107*
O210.32026 (16)0.58220 (8)0.52010 (6)0.0580 (4)
C220.3337 (3)0.48202 (14)0.54042 (11)0.0732 (8)
H22A0.38620.48020.5770.11*
H22B0.37330.44320.50830.11*
H22C0.25070.45490.54970.11*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0363 (11)0.0263 (9)0.0430 (10)0.0007 (7)0.0014 (9)0.0003 (7)
C20.0353 (11)0.0306 (9)0.0396 (9)0.0020 (7)0.0002 (8)0.0028 (7)
C30.0354 (10)0.0234 (8)0.0401 (9)0.0021 (7)0.0037 (8)0.0033 (7)
C40.0389 (11)0.0266 (8)0.0409 (10)0.0013 (7)0.0026 (8)0.0033 (7)
C50.0446 (12)0.0319 (9)0.0397 (10)0.0024 (8)0.0066 (9)0.0024 (7)
C60.0453 (12)0.0249 (9)0.0470 (11)0.0020 (7)0.0027 (9)0.0030 (7)
C70.0368 (12)0.0307 (10)0.0462 (10)0.0018 (7)0.0028 (9)0.0046 (7)
O80.0433 (9)0.0392 (7)0.0847 (11)0.0009 (6)0.0179 (8)0.0071 (6)
N90.0376 (10)0.0280 (8)0.0648 (11)0.0005 (7)0.0098 (9)0.0062 (6)
C100.0405 (12)0.0289 (9)0.0434 (10)0.0031 (7)0.0049 (9)0.0007 (7)
C110.0345 (11)0.0392 (10)0.0484 (11)0.0028 (8)0.0007 (9)0.0019 (8)
C120.0455 (12)0.0350 (10)0.0458 (11)0.0004 (8)0.0019 (9)0.0071 (8)
C130.0486 (13)0.0320 (10)0.0445 (10)0.0083 (8)0.0010 (10)0.0025 (7)
C140.0375 (12)0.0407 (11)0.0626 (13)0.0059 (8)0.0056 (10)0.0013 (9)
C150.0431 (12)0.0328 (10)0.0653 (13)0.0001 (8)0.0035 (11)0.0067 (8)
O160.0579 (11)0.0425 (8)0.0784 (11)0.0177 (7)0.0125 (9)0.0186 (7)
O170.0488 (9)0.0251 (6)0.0571 (8)0.0018 (5)0.0083 (7)0.0092 (5)
C180.0845 (19)0.0405 (12)0.0918 (17)0.0007 (11)0.0379 (15)0.0227 (11)
O190.0577 (10)0.0328 (7)0.0666 (9)0.0043 (6)0.0216 (7)0.0053 (6)
C200.0641 (17)0.0598 (14)0.0906 (17)0.0157 (11)0.0370 (15)0.0139 (12)
O210.0823 (12)0.0352 (7)0.0564 (8)0.0025 (7)0.0279 (8)0.0102 (6)
C220.105 (2)0.0445 (13)0.0700 (15)0.0016 (12)0.0323 (16)0.0168 (10)
Geometric parameters (Å, º) top
C1—C61.384 (2)C12—C131.371 (3)
C1—C21.389 (2)C12—H120.93
C1—C71.496 (2)C13—O161.371 (2)
C2—C31.385 (2)C13—C141.382 (3)
C2—H20.93C14—C151.386 (2)
C3—O171.3766 (17)C14—H140.93
C3—C41.391 (2)C15—H150.93
C4—O191.3670 (19)O16—H160.88 (4)
C4—C51.400 (2)O17—C181.428 (2)
C5—O211.364 (2)C18—H18A0.96
C5—C61.386 (2)C18—H18B0.96
C6—H60.93C18—H18C0.96
C7—O81.225 (2)O19—C201.416 (3)
C7—N91.342 (2)C20—H20A0.96
N9—C101.432 (2)C20—H20B0.96
N9—H90.87 (2)C20—H20C0.96
C10—C151.381 (3)O21—C221.420 (2)
C10—C111.387 (2)C22—H22A0.96
C11—C121.387 (2)C22—H22B0.96
C11—H110.93C22—H22C0.96
C6—C1—C2120.41 (15)C11—C12—H12119.8
C6—C1—C7121.60 (15)O16—C13—C12117.10 (17)
C2—C1—C7117.88 (16)O16—C13—C14123.00 (19)
C3—C2—C1119.24 (16)C12—C13—C14119.90 (16)
C3—C2—H2120.4C13—C14—C15119.97 (19)
C1—C2—H2120.4C13—C14—H14120
O17—C3—C2124.22 (15)C15—C14—H14120
O17—C3—C4114.81 (14)C10—C15—C14120.31 (17)
C2—C3—C4120.97 (14)C10—C15—H15119.8
O19—C4—C3116.41 (14)C14—C15—H15119.8
O19—C4—C5124.17 (16)C13—O16—H16110.2 (18)
C3—C4—C5119.28 (15)C3—O17—C18118.15 (14)
O21—C5—C6124.09 (14)O17—C18—H18A109.5
O21—C5—C4116.28 (15)O17—C18—H18B109.5
C6—C5—C4119.60 (16)H18A—C18—H18B109.5
C1—C6—C5120.43 (15)O17—C18—H18C109.5
C1—C6—H6119.8H18A—C18—H18C109.5
C5—C6—H6119.8H18B—C18—H18C109.5
O8—C7—N9123.53 (17)C4—O19—C20119.47 (15)
O8—C7—C1121.22 (15)O19—C20—H20A109.5
N9—C7—C1115.25 (17)O19—C20—H20B109.5
C7—N9—C10126.95 (18)H20A—C20—H20B109.5
C7—N9—H9115.8 (13)O19—C20—H20C109.5
C10—N9—H9116.8 (13)H20A—C20—H20C109.5
C15—C10—C11119.46 (16)H20B—C20—H20C109.5
C15—C10—N9122.81 (16)C5—O21—C22118.36 (14)
C11—C10—N9117.50 (17)O21—C22—H22A109.5
C12—C11—C10119.92 (18)O21—C22—H22B109.5
C12—C11—H11120H22A—C22—H22B109.5
C10—C11—H11120O21—C22—H22C109.5
C13—C12—C11120.43 (17)H22A—C22—H22C109.5
C13—C12—H12119.8H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O17i0.87 (2)2.18 (2)3.029 (2)165.8 (17)
O16—H16···O8ii0.88 (4)1.84 (4)2.710 (2)172 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H17NO5
Mr303.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)10.4280 (5), 13.4075 (6), 21.5565 (8)
V3)3013.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.1
Crystal size (mm)0.23 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14730, 3459, 2086
Rint0.130
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.134, 0.97
No. of reflections3459
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O17i0.87 (2)2.18 (2)3.029 (2)165.8 (17)
O16—H16···O8ii0.88 (4)1.84 (4)2.710 (2)172 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z.
 

Acknowledgements

We wish to thank the DBIO company for partial support of this work.

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationCasanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749–1755.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389–1395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991–2993.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds