organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2926-o2927

N-(4-Bromo­phen­yl)-2-(naphthalen-1-yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Montepadavu, PO, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 3 October 2011; accepted 6 October 2011; online 12 October 2011)

In the title compound, C18H14BrNO, the naphthalene ring system and the benzene ring form dihedral angles of 78.8 (2) and 19.7 (2)°, respectively, with the acetamide C—C(=O)—N plane. The naphthalene ring system forms a dihedral angle of 64.88 (19)° with the benzene ring. In the crystal, mol­ecules are linked via inter­molecular bifurcated (N,C)—H⋯O hydrogen bonds, generating an R21(6) ring motif, forming chains along the b axis.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For studies of amides in therapy, myocardial infarction and ischemic disease, see: Dorsch et al. (2002[Dorsch, D., Mederski, W., Tsaklakidis, C., Cezanne, B., Gleitz, J. & Barnes, C. (2002). PCT Int. Appl. WO 2002057236.]); Wang, Li & Li (2010[Wang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.]); Wang, Beck et al. (2010[Wang, S., Beck, R., Burd, A., Blench, T., Marlin, F., Ayele, T., Buxton, S., Dagostin, C., Malic, M., Joshi, R., Barry, J., Sajad, M., Cheung, C., Shaikh, S., Chahwala, S., Chander, C., Baumgartner, C., Holthoff, H.-P., Murray, E., Blackney, M. & Giddings, A. (2010). J. Med. Chem. 53, 1473-1482.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.]); Li & Wu (2010[Li, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274.]); Xiao et al. (2010[Xiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.]); Praveen et al. (2011[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the definition of graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14BrNO

  • Mr = 340.21

  • Orthorhombic, P b c a

  • a = 12.6837 (11) Å

  • b = 9.4047 (11) Å

  • c = 25.641 (3) Å

  • V = 3058.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.415, Tmax = 0.523

  • 18691 measured reflections

  • 2999 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.182

  • S = 1.02

  • 2999 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.80 2.09 2.879 (3) 167
C11—H11A⋯O1i 0.97 2.59 3.422 (4) 143
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010) and for the therapy of thromboembolic disorder and effective anticoagulants for myocardial infarction and ischemic disease (Dorsch et al., 2002; Wang, Li & Li, 2010; Wang, Beck et al., 2010). Crystal structures of some acetamide derivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(2-bromophenyl)-2-(2-nitrophenoxy) acetamide (Li & Wu, 2010) and N-(3-chloro-4-fluorophenyl)-2- (naphthalen-1-yl)acetamide (Praveen et al., 2011) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2010). The naphthalene ring system (C1–C10, maximum deviation of 0.022 (7) Å at atom C7) and the benzene ring (C13–C18) form dihedral angles of 78.8 (2) and 19.7 (2)°, respectively, with the acetamide moiety [O1/N1/C11/C12, maximum deviation of 0.014 (4) Å at atom C12]. The naphthalene ring system also forms dihedral angle of 64.88 (19)° with the benzene ring.

In the crystal packing (Fig. 2), molecules are linked via intermolecular bifurcated N1—H1N1···O1 and C11—H11A···O1 acceptor bonds (Table 1), generating an R21(6) ring motif, (Bernstein et al., 1995) to form one-dimensional chains along the [010] direction.

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For studies of amides in therapy, myocardial infarction and ischemic disease, see: Dorsch et al. (2002); Wang, Li & Li (2010); Wang, Beck et al. (2010). For related structures, see: Fun et al. (2010); Li & Wu (2010); Xiao et al. (2010); Praveen et al. (2011). For standard bond-length data, see: Allen et al. (1987). For the definition of graph-set notation, see: Bernstein et al. (1995).

Experimental top

Naphthalen-1-acetic acid (0.186g, 1 mmol) and 4-bromoaniline (0.172g, 1 mmol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, and was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Single crystals were grown from toluene and acetone mixture by the slow evaporation method (m.p.: 476-478 K).

Refinement top

Atom H1N1 was located from the difference Fourier map and refined using a riding model, with N1—H1N1 = 0.80 Å, and with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C). The same Uij parameters were used for atom pair C4/C5.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 20% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N-(4-Bromophenyl)-2-(naphthalen-1-yl)acetamide top
Crystal data top
C18H14BrNOF(000) = 1376
Mr = 340.21Dx = 1.478 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3596 reflections
a = 12.6837 (11) Åθ = 2.3–21.0°
b = 9.4047 (11) ŵ = 2.69 mm1
c = 25.641 (3) ÅT = 296 K
V = 3058.6 (6) Å3Block, colourless
Z = 80.40 × 0.30 × 0.28 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2999 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.415, Tmax = 0.523k = 1111
18691 measured reflectionsl = 2931
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.081P)2 + 1.7994P]
where P = (Fo2 + 2Fc2)/3
2999 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C18H14BrNOV = 3058.6 (6) Å3
Mr = 340.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.6837 (11) ŵ = 2.69 mm1
b = 9.4047 (11) ÅT = 296 K
c = 25.641 (3) Å0.40 × 0.30 × 0.28 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2999 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1864 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.523Rint = 0.046
18691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
2999 reflectionsΔρmin = 0.53 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68647 (5)0.59626 (9)0.26162 (3)0.1354 (4)
O10.2893 (2)0.3465 (2)0.09635 (13)0.0798 (8)
N10.3185 (2)0.5799 (3)0.11054 (13)0.0606 (7)
H1N10.29430.65570.10260.073*
C10.0129 (3)0.4200 (4)0.07382 (18)0.0776 (11)
C20.0061 (4)0.5306 (5)0.11333 (19)0.0917 (13)
H2A0.06080.59560.11750.110*
C30.0795 (5)0.5381 (7)0.1437 (2)0.1183 (18)
H3A0.08370.60950.16870.142*
C40.1616 (5)0.4428 (8)0.1390 (3)0.1343 (16)
H4A0.22000.45220.16060.161*
C50.1592 (5)0.3370 (9)0.1039 (3)0.1343 (16)
H5A0.21510.27340.10150.161*
C60.0718 (3)0.3231 (5)0.07082 (19)0.0889 (13)
C70.0643 (5)0.2134 (6)0.0329 (3)0.1152 (19)
H7A0.11790.14630.03060.138*
C80.0194 (6)0.2039 (6)0.0004 (2)0.1104 (17)
H8A0.02190.13370.02600.133*
C90.1015 (4)0.3026 (4)0.00486 (18)0.0880 (12)
H9A0.15950.29440.01710.106*
C100.1007 (3)0.4098 (4)0.04051 (16)0.0719 (10)
C110.1911 (3)0.5111 (4)0.04556 (17)0.0749 (10)
H11A0.16360.60490.05340.090*
H11B0.22720.51670.01230.090*
C120.2695 (3)0.4708 (3)0.08686 (15)0.0604 (8)
C130.4021 (3)0.5751 (3)0.14681 (13)0.0573 (8)
C140.4212 (3)0.6974 (4)0.17541 (16)0.0740 (10)
H14A0.37730.77590.17160.089*
C150.5052 (4)0.7029 (5)0.20955 (17)0.0906 (13)
H15A0.51800.78510.22870.109*
C160.5701 (3)0.5868 (5)0.21535 (18)0.0838 (12)
C170.5511 (3)0.4651 (5)0.18744 (18)0.0819 (11)
H17A0.59500.38660.19150.098*
C180.4673 (3)0.4587 (4)0.15334 (16)0.0707 (10)
H18A0.45450.37580.13460.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1139 (5)0.1942 (8)0.0981 (5)0.0291 (4)0.0306 (3)0.0162 (4)
O10.0801 (16)0.0393 (12)0.120 (2)0.0026 (10)0.0274 (15)0.0069 (13)
N10.0672 (16)0.0380 (12)0.077 (2)0.0013 (11)0.0057 (14)0.0018 (13)
C10.069 (2)0.082 (3)0.082 (3)0.0096 (19)0.017 (2)0.011 (2)
C20.089 (3)0.090 (3)0.096 (3)0.015 (2)0.002 (3)0.005 (3)
C30.112 (4)0.123 (4)0.120 (4)0.025 (3)0.013 (3)0.014 (4)
C40.087 (2)0.174 (5)0.143 (4)0.001 (3)0.005 (3)0.002 (3)
C50.087 (2)0.174 (5)0.143 (4)0.001 (3)0.005 (3)0.002 (3)
C60.079 (3)0.088 (3)0.100 (3)0.006 (2)0.035 (2)0.013 (3)
C70.110 (4)0.099 (4)0.137 (5)0.015 (3)0.061 (4)0.005 (4)
C80.136 (5)0.088 (3)0.107 (4)0.014 (3)0.048 (4)0.014 (3)
C90.113 (3)0.070 (2)0.081 (3)0.011 (2)0.027 (2)0.005 (2)
C100.082 (2)0.064 (2)0.070 (2)0.0090 (18)0.018 (2)0.013 (2)
C110.085 (2)0.057 (2)0.082 (3)0.0006 (17)0.005 (2)0.011 (2)
C120.0600 (18)0.0450 (17)0.076 (2)0.0011 (14)0.0071 (16)0.0031 (17)
C130.0647 (18)0.0478 (16)0.059 (2)0.0103 (14)0.0104 (16)0.0009 (15)
C140.090 (3)0.061 (2)0.071 (2)0.0100 (18)0.014 (2)0.0094 (19)
C150.108 (3)0.091 (3)0.073 (3)0.027 (3)0.013 (2)0.024 (2)
C160.078 (3)0.106 (3)0.068 (3)0.019 (2)0.002 (2)0.003 (2)
C170.072 (2)0.081 (2)0.093 (3)0.0039 (19)0.003 (2)0.003 (2)
C180.072 (2)0.0562 (18)0.084 (3)0.0029 (16)0.0043 (19)0.0047 (19)
Geometric parameters (Å, º) top
Br1—C161.896 (4)C8—C91.402 (8)
O1—C121.220 (4)C8—H8A0.9300
N1—C121.345 (4)C9—C101.361 (6)
N1—C131.410 (5)C9—H9A0.9300
N1—H1N10.8031C10—C111.496 (5)
C1—C101.407 (6)C11—C121.501 (5)
C1—C61.411 (6)C11—H11A0.9700
C1—C21.455 (6)C11—H11B0.9700
C2—C31.337 (7)C13—C181.382 (5)
C2—H2A0.9300C13—C141.385 (5)
C3—C41.379 (8)C14—C151.380 (6)
C3—H3A0.9300C14—H14A0.9300
C4—C51.342 (10)C15—C161.374 (7)
C4—H4A0.9300C15—H15A0.9300
C5—C61.401 (8)C16—C171.371 (6)
C5—H5A0.9300C17—C181.378 (6)
C6—C71.421 (8)C17—H17A0.9300
C7—C81.366 (8)C18—H18A0.9300
C7—H7A0.9300
C12—N1—C13128.4 (3)C9—C10—C1117.7 (4)
C12—N1—H1N1112.7C9—C10—C11121.6 (4)
C13—N1—H1N1119.0C1—C10—C11120.7 (4)
C10—C1—C6121.7 (4)C10—C11—C12114.1 (3)
C10—C1—C2121.2 (4)C10—C11—H11A108.7
C6—C1—C2117.1 (4)C12—C11—H11A108.7
C3—C2—C1119.4 (5)C10—C11—H11B108.7
C3—C2—H2A120.3C12—C11—H11B108.7
C1—C2—H2A120.3H11A—C11—H11B107.6
C2—C3—C4121.9 (6)O1—C12—N1123.1 (3)
C2—C3—H3A119.1O1—C12—C11121.3 (3)
C4—C3—H3A119.1N1—C12—C11115.6 (3)
C5—C4—C3121.5 (7)C18—C13—C14119.2 (4)
C5—C4—H4A119.2C18—C13—N1123.7 (3)
C3—C4—H4A119.2C14—C13—N1117.0 (3)
C4—C5—C6119.5 (6)C15—C14—C13120.1 (4)
C4—C5—H5A120.2C15—C14—H14A119.9
C6—C5—H5A120.2C13—C14—H14A119.9
C5—C6—C1120.6 (5)C16—C15—C14120.1 (4)
C5—C6—C7122.4 (5)C16—C15—H15A120.0
C1—C6—C7117.1 (5)C14—C15—H15A120.0
C8—C7—C6121.9 (5)C17—C16—C15120.1 (4)
C8—C7—H7A119.1C17—C16—Br1120.1 (4)
C6—C7—H7A119.1C15—C16—Br1119.8 (3)
C7—C8—C9118.3 (5)C16—C17—C18120.2 (4)
C7—C8—H8A120.9C16—C17—H17A119.9
C9—C8—H8A120.9C18—C17—H17A119.9
C10—C9—C8123.4 (6)C17—C18—C13120.3 (4)
C10—C9—H9A118.3C17—C18—H18A119.9
C8—C9—H9A118.3C13—C18—H18A119.9
C10—C1—C2—C3178.9 (4)C2—C1—C10—C111.3 (5)
C6—C1—C2—C31.7 (6)C9—C10—C11—C1295.0 (4)
C1—C2—C3—C40.6 (8)C1—C10—C11—C1283.0 (4)
C2—C3—C4—C50.6 (11)C13—N1—C12—O13.8 (6)
C3—C4—C5—C60.5 (11)C13—N1—C12—C11173.5 (3)
C4—C5—C6—C10.6 (9)C10—C11—C12—O134.1 (5)
C4—C5—C6—C7180.0 (6)C10—C11—C12—N1148.6 (3)
C10—C1—C6—C5178.9 (5)C12—N1—C13—C1818.9 (5)
C2—C1—C6—C51.7 (6)C12—N1—C13—C14164.0 (3)
C10—C1—C6—C70.5 (6)C18—C13—C14—C150.7 (5)
C2—C1—C6—C7178.9 (4)N1—C13—C14—C15176.5 (3)
C5—C6—C7—C8177.6 (5)C13—C14—C15—C160.1 (6)
C1—C6—C7—C81.9 (7)C14—C15—C16—C170.3 (6)
C6—C7—C8—C92.5 (8)C14—C15—C16—Br1179.1 (3)
C7—C8—C9—C101.9 (7)C15—C16—C17—C180.2 (7)
C8—C9—C10—C10.6 (6)Br1—C16—C17—C18179.2 (3)
C8—C9—C10—C11178.7 (4)C16—C17—C18—C130.4 (6)
C6—C1—C10—C90.0 (5)C14—C13—C18—C170.8 (6)
C2—C1—C10—C9179.4 (4)N1—C13—C18—C17176.2 (4)
C6—C1—C10—C11178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.802.092.879 (3)167
C11—H11A···O1i0.972.593.422 (4)143
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC18H14BrNO
Mr340.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.6837 (11), 9.4047 (11), 25.641 (3)
V3)3058.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.40 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.415, 0.523
No. of measured, independent and
observed [I > 2σ(I)] reflections
18691, 2999, 1864
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.182, 1.02
No. of reflections2999
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.802.092.879 (3)167
C11—H11A···O1i0.972.593.422 (4)143
Symmetry code: (i) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC-New Delhi, Government of India, for financial assistance for the purchase of chemicals through a BSR one-time grant.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDorsch, D., Mederski, W., Tsaklakidis, C., Cezanne, B., Gleitz, J. & Barnes, C. (2002). PCT Int. Appl. WO 2002057236.  Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Beck, R., Burd, A., Blench, T., Marlin, F., Ayele, T., Buxton, S., Dagostin, C., Malic, M., Joshi, R., Barry, J., Sajad, M., Cheung, C., Shaikh, S., Chahwala, S., Chander, C., Baumgartner, C., Holthoff, H.-P., Murray, E., Blackney, M. & Giddings, A. (2010). J. Med. Chem. 53, 1473–1482.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2926-o2927
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds