organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Butyl-4,6-di­phenyl­pyrimidin-2-amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 October 2011; accepted 8 October 2011; online 12 October 2011)

In the title compound, C20H21N3, the pyrimidine ring is inclined at dihedral angles of 51.57 (4) and 2.49 (4)° to the two phenyl rings. The dihedral angle between the two terminal phenyl rings is 50.44 (4)°. In the crystal, adjacent mol­ecules are linked via a pair of N—H⋯N hydrogen bonds, forming an inversion dimer with an R22(8) ring motif. Furthermore, the crystal structure is stabilized by a weak ππ inter­action, with a centroid–centroid distance of 3.6065 (5) Å.

Related literature

For biological applications of pyrimidine derivatives, see: Katrizky et al. (1982[Katrizky, A. R., Saigado, H. J., Chermprapai, A. & Ponkshe, N. K. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 153-158.]); Brown & Lyall (1964[Brown, D. J. & Lyall, M. J. (1964). Aust. J. Chem. 17, 794-802.]). For the synthesis, see: Goswami et al. (2009[Goswami, S., Hazra, A. & Jana, S. (2009). Bull. Chem. Soc. Jpn, 82, 1175-1181.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3

  • Mr = 303.40

  • Triclinic, [P \overline 1]

  • a = 8.1544 (1) Å

  • b = 9.5284 (1) Å

  • c = 11.3237 (2) Å

  • α = 77.090 (1)°

  • β = 74.152 (1)°

  • γ = 71.288 (1)°

  • V = 792.70 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.47 × 0.25 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.993

  • 26407 measured reflections

  • 6933 independent reflections

  • 5769 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.04

  • 6933 reflections

  • 292 parameters

  • All H-atom parameters refined

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N1i 0.869 (15) 2.262 (15) 3.1249 (10) 172.4 (15)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted pyrimidine derivatives are utilized as antiviral and antifungal agents (Katrizky et al., 1982; Brown & Lyall, 1964). 2-Butylamino-4,6-diphenyl pyrimidine has been synthesized by solid-phase microwave irradiation (Goswami et al., 2009). The crystal structure of 2-butylamino-4,6-diphenylpyrimidine is reported here.

The molecular structure of the title compound is shown in Fig. 1. The pyrimidine (N1/N2/C7–C9/C16) ring is inclined at dihedral angles of 51.57 (4) and 2.49 (4)°, respectively, to the two phenyl (C1–C6 and C10–C15) rings. The corresponding angle between the two terminal phenyl (C1–C6 and C10–C15) rings is 50.44 (4)°.

In the crystal, (Fig. 2), the adjacent molecules are linked via a pair of N—H···N (Table 1) hydrogen bonds, forming an inversion dimer with an R22(8) ring motif (Bernstein et al., 1995). The crystal structure is further stabilized by a weak ππ interaction between the pyrimidine (Cg1; N1/N2/C7–C9/C16) and phenyl (Cg3; C10–C15) rings [Cg1···Cg3ii = 3.6065 (5) Å; (ii) 1 - x, 1 - y, -z].

Related literature top

For biological applications of pyrimidine derivatives, see: Katrizky et al. (1982); Brown & Lyall (1964). For the synthesis, see: Goswami et al. (2009). For graph-set notation, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of S-methylisothiourea sulphate (556 mg, 2 mmol), potassium carbonate (345 mg, 2.5 mmol) and butylamine (292 mg, 4 mmol) was irradiated at 450 Watt for 12 minutes in a microwave oven. The solid mass was washed with chloroform to remove the unreacted butylamine and then dried. The solid residue was then mixed with dibenzoylmethane (896 mg, 4 mmol) and again irradiated at 300 Watt for 6 minutes. Water was added to it and the contents were extracted with chloroform. The crude product was then purified through column chromatography (silica gel, 100–200 mesh) using 10% ethyl acetate in petroleum ether as an eluent to afford pure compound. The single crystal was grown by slow evaporation of a chloroform and methanol (3:1) solution (m.p. 65–66 °C).

Refinement top

All hydrogen atoms were located from a difference Fourier maps and refined freely [N—H = 0.869 (14) Å and C—H = 0.961 (15)–1.006 (12) Å]. The highest residual electron density peak is located at 0.68 Å from C3 and the deepest hole 1.26 Å located at from C16.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A crystal packing view of the title compound along the b axis.
N-Butyl-4,6-diphenylpyrimidin-2-amine top
Crystal data top
C20H21N3Z = 2
Mr = 303.40F(000) = 324
Triclinic, P1Dx = 1.271 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1544 (1) ÅCell parameters from 8544 reflections
b = 9.5284 (1) Åθ = 2.7–35.6°
c = 11.3237 (2) ŵ = 0.08 mm1
α = 77.090 (1)°T = 100 K
β = 74.152 (1)°Block, colourless
γ = 71.288 (1)°0.47 × 0.25 × 0.09 mm
V = 792.70 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6933 independent reflections
Radiation source: fine-focus sealed tube5769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.965, Tmax = 0.993k = 1515
26407 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.1237P]
where P = (Fo2 + 2Fc2)/3
6933 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H21N3γ = 71.288 (1)°
Mr = 303.40V = 792.70 (2) Å3
Triclinic, P1Z = 2
a = 8.1544 (1) ÅMo Kα radiation
b = 9.5284 (1) ŵ = 0.08 mm1
c = 11.3237 (2) ÅT = 100 K
α = 77.090 (1)°0.47 × 0.25 × 0.09 mm
β = 74.152 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6933 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5769 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.993Rint = 0.031
26407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136All H-atom parameters refined
S = 1.04Δρmax = 0.56 e Å3
6933 reflectionsΔρmin = 0.31 e Å3
292 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36098 (9)0.87806 (7)0.01978 (6)0.01301 (12)
N20.37435 (8)0.65917 (7)0.13733 (6)0.01297 (12)
N30.48902 (9)0.84810 (7)0.14526 (6)0.01494 (12)
C10.25894 (11)0.85602 (8)0.30090 (7)0.01612 (14)
C20.19425 (11)0.94496 (9)0.40295 (8)0.01783 (15)
C30.08601 (11)1.09047 (9)0.39389 (8)0.01712 (14)
C40.04519 (10)1.14759 (8)0.28338 (8)0.01701 (14)
C50.11410 (10)1.06024 (8)0.18232 (7)0.01555 (14)
C60.22075 (10)0.91331 (8)0.19031 (7)0.01279 (13)
C70.28463 (10)0.81869 (8)0.07941 (7)0.01245 (12)
C80.25519 (10)0.67743 (8)0.03777 (7)0.01350 (13)
C90.30031 (9)0.60099 (7)0.07420 (7)0.01186 (12)
C100.26882 (9)0.45275 (7)0.13143 (7)0.01231 (12)
C110.31422 (10)0.38330 (8)0.24527 (7)0.01509 (13)
C120.28902 (11)0.24334 (8)0.29942 (8)0.01732 (14)
C130.21705 (11)0.17083 (8)0.24098 (8)0.01694 (14)
C140.17268 (11)0.23799 (8)0.12759 (8)0.01749 (14)
C150.19841 (10)0.37773 (8)0.07272 (8)0.01567 (14)
C160.40608 (10)0.79250 (7)0.08610 (7)0.01233 (12)
C170.51118 (10)0.78847 (8)0.27152 (7)0.01481 (13)
C180.66070 (11)0.64437 (8)0.28644 (7)0.01577 (14)
C190.68324 (11)0.60211 (8)0.42038 (8)0.01700 (14)
C200.82332 (13)0.45432 (10)0.44264 (10)0.02491 (18)
H10.3360 (16)0.7506 (14)0.3075 (11)0.021 (3)*
H20.2272 (18)0.9035 (15)0.4830 (12)0.027 (3)*
H30.0400 (17)1.1531 (14)0.4640 (12)0.022 (3)*
H40.0327 (17)1.2473 (14)0.2754 (12)0.024 (3)*
H50.0862 (16)1.1020 (13)0.1050 (11)0.021 (3)*
H80.2022 (17)0.6372 (14)0.0856 (12)0.025 (3)*
H110.3622 (17)0.4368 (14)0.2855 (12)0.025 (3)*
H120.3224 (18)0.1965 (14)0.3804 (13)0.027 (3)*
H130.1961 (18)0.0735 (15)0.2800 (13)0.029 (3)*
H140.1241 (18)0.1847 (15)0.0865 (12)0.028 (3)*
H150.1669 (18)0.4180 (14)0.0092 (12)0.026 (3)*
H17A0.3985 (16)0.7737 (13)0.3224 (11)0.017 (3)*
H17B0.5357 (16)0.8685 (13)0.3029 (11)0.018 (3)*
H18A0.7692 (17)0.6580 (14)0.2288 (12)0.023 (3)*
H18B0.6321 (17)0.5604 (14)0.2616 (12)0.026 (3)*
H19A0.7185 (17)0.6833 (14)0.4430 (12)0.023 (3)*
H19B0.5682 (17)0.5940 (13)0.4765 (12)0.022 (3)*
H20A0.938 (2)0.4555 (16)0.3902 (14)0.036 (4)*
H20B0.8407 (19)0.4286 (16)0.5301 (14)0.034 (4)*
H20C0.7926 (19)0.3696 (16)0.4220 (13)0.033 (3)*
H1N30.5202 (19)0.9295 (16)0.1112 (13)0.031 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0155 (3)0.0116 (2)0.0130 (3)0.00496 (19)0.0050 (2)0.00004 (19)
N20.0150 (3)0.0112 (2)0.0137 (3)0.00512 (19)0.0040 (2)0.00066 (19)
N30.0221 (3)0.0124 (2)0.0142 (3)0.0083 (2)0.0081 (2)0.0009 (2)
C10.0197 (3)0.0139 (3)0.0158 (3)0.0044 (2)0.0064 (3)0.0018 (2)
C20.0220 (4)0.0188 (3)0.0143 (3)0.0066 (3)0.0067 (3)0.0010 (2)
C30.0175 (3)0.0179 (3)0.0167 (3)0.0071 (2)0.0070 (3)0.0031 (2)
C40.0165 (3)0.0142 (3)0.0185 (4)0.0033 (2)0.0051 (3)0.0013 (2)
C50.0167 (3)0.0137 (3)0.0150 (3)0.0033 (2)0.0035 (3)0.0008 (2)
C60.0142 (3)0.0119 (3)0.0131 (3)0.0053 (2)0.0042 (2)0.0006 (2)
C70.0134 (3)0.0118 (3)0.0122 (3)0.0038 (2)0.0031 (2)0.0012 (2)
C80.0165 (3)0.0120 (3)0.0137 (3)0.0057 (2)0.0052 (2)0.0005 (2)
C90.0122 (3)0.0108 (3)0.0128 (3)0.0038 (2)0.0023 (2)0.0017 (2)
C100.0123 (3)0.0109 (3)0.0139 (3)0.0043 (2)0.0023 (2)0.0010 (2)
C110.0184 (3)0.0142 (3)0.0137 (3)0.0070 (2)0.0041 (3)0.0002 (2)
C120.0210 (3)0.0152 (3)0.0152 (3)0.0077 (2)0.0032 (3)0.0019 (2)
C130.0174 (3)0.0122 (3)0.0203 (4)0.0063 (2)0.0011 (3)0.0009 (2)
C140.0189 (3)0.0144 (3)0.0220 (4)0.0077 (2)0.0052 (3)0.0026 (3)
C150.0182 (3)0.0134 (3)0.0175 (3)0.0063 (2)0.0062 (3)0.0008 (2)
C160.0139 (3)0.0109 (3)0.0128 (3)0.0040 (2)0.0035 (2)0.0014 (2)
C170.0191 (3)0.0131 (3)0.0139 (3)0.0045 (2)0.0067 (3)0.0016 (2)
C180.0187 (3)0.0137 (3)0.0166 (3)0.0041 (2)0.0069 (3)0.0024 (2)
C190.0203 (3)0.0147 (3)0.0177 (4)0.0052 (2)0.0082 (3)0.0002 (2)
C200.0288 (4)0.0190 (4)0.0285 (5)0.0016 (3)0.0166 (4)0.0012 (3)
Geometric parameters (Å, º) top
N1—C71.3378 (9)C10—C111.3996 (10)
N1—C161.3598 (9)C10—C151.4024 (10)
N2—C91.3455 (9)C11—C121.3923 (10)
N2—C161.3479 (9)C11—H110.974 (13)
N3—C161.3502 (9)C12—C131.3914 (11)
N3—C171.4532 (10)C12—H120.995 (13)
N3—H1N30.869 (14)C13—C141.3883 (11)
C1—C21.3930 (11)C13—H130.980 (14)
C1—C61.3952 (11)C14—C151.3933 (11)
C1—H11.006 (12)C14—H140.983 (14)
C2—C31.3931 (11)C15—H150.991 (13)
C2—H21.005 (13)C17—C181.5281 (10)
C3—C41.3905 (12)C17—H17A0.976 (12)
C3—H30.967 (13)C17—H17B1.002 (12)
C4—C51.3942 (11)C18—C191.5259 (11)
C4—H40.967 (13)C18—H18A0.973 (13)
C5—C61.3989 (10)C18—H18B1.015 (13)
C5—H50.983 (12)C19—C201.5224 (11)
C6—C71.4870 (10)C19—H19A1.009 (13)
C7—C81.3977 (10)C19—H19B0.995 (13)
C8—C91.3942 (10)C20—H20A0.961 (15)
C8—H80.977 (13)C20—H20B1.003 (14)
C9—C101.4879 (10)C20—H20C1.007 (14)
C7—N1—C16115.44 (6)C13—C12—H12120.7 (8)
C9—N2—C16117.01 (6)C11—C12—H12119.1 (8)
C16—N3—C17122.97 (6)C14—C13—C12119.61 (7)
C16—N3—H1N3119.7 (9)C14—C13—H13120.0 (8)
C17—N3—H1N3116.9 (9)C12—C13—H13120.4 (8)
C2—C1—C6120.39 (7)C13—C14—C15120.42 (7)
C2—C1—H1119.9 (7)C13—C14—H14118.8 (8)
C6—C1—H1119.7 (7)C15—C14—H14120.8 (8)
C1—C2—C3120.08 (7)C14—C15—C10120.50 (7)
C1—C2—H2119.4 (7)C14—C15—H15116.3 (7)
C3—C2—H2120.5 (7)C10—C15—H15123.2 (7)
C4—C3—C2119.84 (7)N2—C16—N3117.51 (6)
C4—C3—H3119.3 (7)N2—C16—N1126.16 (7)
C2—C3—H3120.8 (7)N3—C16—N1116.33 (6)
C3—C4—C5120.14 (7)N3—C17—C18115.74 (6)
C3—C4—H4120.4 (8)N3—C17—H17A108.5 (7)
C5—C4—H4119.4 (8)C18—C17—H17A110.1 (7)
C4—C5—C6120.25 (7)N3—C17—H17B106.5 (7)
C4—C5—H5119.7 (7)C18—C17—H17B108.5 (7)
C6—C5—H5120.1 (7)H17A—C17—H17B107.3 (10)
C1—C6—C5119.26 (7)C19—C18—C17110.79 (6)
C1—C6—C7121.10 (6)C19—C18—H18A111.7 (7)
C5—C6—C7119.58 (7)C17—C18—H18A108.8 (7)
N1—C7—C8122.79 (7)C19—C18—H18B109.7 (7)
N1—C7—C6117.19 (6)C17—C18—H18B109.1 (7)
C8—C7—C6119.93 (6)H18A—C18—H18B106.6 (10)
C9—C8—C7117.28 (6)C20—C19—C18113.18 (7)
C9—C8—H8122.7 (8)C20—C19—H19A108.2 (7)
C7—C8—H8120.0 (8)C18—C19—H19A109.3 (7)
N2—C9—C8121.17 (6)C20—C19—H19B108.4 (7)
N2—C9—C10116.16 (6)C18—C19—H19B109.2 (7)
C8—C9—C10122.67 (6)H19A—C19—H19B108.4 (10)
C11—C10—C15118.50 (6)C19—C20—H20A112.0 (9)
C11—C10—C9119.78 (6)C19—C20—H20B112.9 (8)
C15—C10—C9121.71 (7)H20A—C20—H20B106.1 (12)
C12—C11—C10120.77 (7)C19—C20—H20C110.9 (8)
C12—C11—H11121.4 (8)H20A—C20—H20C105.5 (12)
C10—C11—H11117.8 (8)H20B—C20—H20C109.0 (11)
C13—C12—C11120.19 (7)
C6—C1—C2—C32.07 (12)C8—C9—C10—C11178.80 (7)
C1—C2—C3—C41.10 (12)N2—C9—C10—C15177.66 (6)
C2—C3—C4—C50.79 (12)C8—C9—C10—C152.87 (11)
C3—C4—C5—C61.73 (12)C15—C10—C11—C120.40 (11)
C2—C1—C6—C51.13 (12)C9—C10—C11—C12178.79 (7)
C2—C1—C6—C7178.34 (7)C10—C11—C12—C130.37 (12)
C4—C5—C6—C10.76 (11)C11—C12—C13—C140.84 (12)
C4—C5—C6—C7176.49 (7)C12—C13—C14—C150.53 (12)
C16—N1—C7—C81.02 (11)C13—C14—C15—C100.24 (12)
C16—N1—C7—C6175.47 (6)C11—C10—C15—C140.71 (11)
C1—C6—C7—N1132.94 (8)C9—C10—C15—C14179.06 (7)
C5—C6—C7—N149.86 (10)C9—N2—C16—N3176.52 (6)
C1—C6—C7—C850.47 (10)C9—N2—C16—N14.11 (11)
C5—C6—C7—C8126.73 (8)C17—N3—C16—N213.28 (11)
N1—C7—C8—C93.34 (11)C17—N3—C16—N1166.16 (7)
C6—C7—C8—C9173.05 (6)C7—N1—C16—N22.90 (11)
C16—N2—C9—C81.39 (10)C7—N1—C16—N3177.72 (6)
C16—N2—C9—C10179.13 (6)C16—N3—C17—C1878.93 (9)
C7—C8—C9—N22.05 (11)N3—C17—C18—C19174.06 (6)
C7—C8—C9—C10177.40 (6)C17—C18—C19—C20176.63 (7)
N2—C9—C10—C110.68 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N1i0.869 (15)2.262 (15)3.1249 (10)172.4 (15)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC20H21N3
Mr303.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1544 (1), 9.5284 (1), 11.3237 (2)
α, β, γ (°)77.090 (1), 74.152 (1), 71.288 (1)
V3)792.70 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.25 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
26407, 6933, 5769
Rint0.031
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.04
No. of reflections6933
No. of parameters292
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.56, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N1i0.869 (15)2.262 (15)3.1249 (10)172.4 (15)
Symmetry code: (i) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/EMR-II], Government of India, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrown, D. J. & Lyall, M. J. (1964). Aust. J. Chem. 17, 794–802.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S., Hazra, A. & Jana, S. (2009). Bull. Chem. Soc. Jpn, 82, 1175–1181.  Web of Science CrossRef CAS Google Scholar
First citationKatrizky, A. R., Saigado, H. J., Chermprapai, A. & Ponkshe, N. K. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 153–158.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds