organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-{2,2′-[1,4-Phenyl­enebis(methyl­ene)]bis­­(­­oxy)bis­­(2,1-phenyl­ene)}di­ethanone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 10 October 2011; accepted 13 October 2011; online 22 October 2011)

The asymmetric unit of the title compound, C24H22O4, contains one half-mol­ecule, the other half being generated by a crystallographic center of inversion. The central benzene ring makes a dihedral angle of 72.49 (5)° with the terminal benzene ring. In the crystal, adjacent mol­ecules are linked through C—H⋯O inter­actions, forming a sheet structure parallel to the bc plane. The sheets are stacked along the a axis via ππ inter­actions formed between the terminal benzene rings [centroid–centroid separation = 3.7276 (6) Å].

Related literature

For related structures, see: Hu (2010[Hu, T. (2010). Acta Cryst. E66, o995.]); Tang et al. (2008[Tang, K.-Z., Tang, Y., Li, Y.-F., Liu, W.-S. & Tan, M.-Y. (2008). Chin. J. Struct. Chem. 27, 451-454.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22O4

  • Mr = 374.42

  • Orthorhombic, P b c a

  • a = 6.8490 (1) Å

  • b = 15.0815 (2) Å

  • c = 17.8519 (3) Å

  • V = 1843.98 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.986

  • 15454 measured reflections

  • 2013 independent reflections

  • 1728 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.06

  • 2013 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.95 2.56 3.4649 (14) 158
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained through the condensation of α,α'-dibromo-p-xylene with two equivalents of 2'-hydroxyacetophenone. The compound has a centrosymmetric molecular structure, the centroid of the central aromatic ring being located on an inversion center. The central aromatic ring makes a dihedral angle of 72.49 (5)° with the terminal rings. This value is comparable to those observed in similar structures (Hu, 2010; Tang et al., 2008). In the crystal, the adjacent molecules are linked through C—H···O interactions (Table 1) to form a sheet parallel to the bc plane (Fig. 2). The sheets are connected into a three-dimensional network via ππ interactions formed between the terminal rings in the a direction [centroid-centroid separation = 3.7276 (6) Å].

Related literature top

For related structures, see: Hu (2010); Tang et al. (2008).

Experimental top

To a suspension of α,α'-dibromo-p-xylene (1 g, 3.8 mmol) and potassium carbonate (1.05 g, 7.6 mmol) in dry acetone (25 ml), 2'-hydroxyacetophenone (1.03 g, 7.6 mmol) was added portionwise and the mixture was refluxed for 48 hr. The solvent was then evaporated under reduced pressure and the crude material was extracted by dichloromethane (3 × 25 ml). The combined organic layers was washed with water and brine and dried over anhydrous sodium sulfate. The solvent was evaporated under vacuum and the formed amorphous solid was re-crystallized from chloroform to obtain off-white crystals of the title compound (m.p. = 435–437 K).

Refinement top

Hydrogen atoms were placed at calculated positions and refined as riding atoms, with C—H distances of 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å, and with Uiso(H) set to 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. [Symmetry code: ' = -x, -y, -z.]
[Figure 2] Fig. 2. The two-dimensional network in the bc plane formed by C—H···O interactions (dashed lines).
1-(2-{4-[(2-Acetylphenoxy)methyl]benzyloxy}phenyl)ethanone top
Crystal data top
C24H22O4F(000) = 792
Mr = 374.42Dx = 1.349 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4755 reflections
a = 6.8490 (1) Åθ = 2.7–30.5°
b = 15.0815 (2) ŵ = 0.09 mm1
c = 17.8519 (3) ÅT = 100 K
V = 1843.98 (5) Å3Block, colorless
Z = 40.35 × 0.21 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2013 independent reflections
Radiation source: fine-focus sealed tube1728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.969, Tmax = 0.986k = 1919
15454 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.5451P]
where P = (Fo2 + 2Fc2)/3
2013 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H22O4V = 1843.98 (5) Å3
Mr = 374.42Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 6.8490 (1) ŵ = 0.09 mm1
b = 15.0815 (2) ÅT = 100 K
c = 17.8519 (3) Å0.35 × 0.21 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2013 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1728 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.986Rint = 0.029
15454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
2013 reflectionsΔρmin = 0.21 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04377 (13)0.42646 (5)0.16533 (5)0.0229 (2)
O20.04118 (12)0.15272 (5)0.15468 (4)0.0159 (2)
C10.07382 (18)0.31010 (8)0.07811 (6)0.0203 (3)
H1A0.04620.27800.06540.031*
H1B0.18540.26960.07510.031*
H1C0.09250.35910.04280.031*
C20.05802 (16)0.34623 (7)0.15636 (6)0.0165 (3)
C30.05993 (16)0.28692 (7)0.22360 (6)0.0146 (2)
C40.06897 (16)0.32882 (8)0.29338 (6)0.0171 (3)
H40.07530.39170.29500.020*
C50.06905 (17)0.28253 (8)0.35995 (7)0.0187 (3)
H50.07610.31300.40650.022*
C60.05866 (16)0.19058 (8)0.35781 (6)0.0177 (3)
H60.05860.15790.40330.021*
C70.04836 (16)0.14611 (7)0.29006 (6)0.0160 (2)
H70.04010.08320.28930.019*
C80.05005 (15)0.19348 (7)0.22261 (6)0.0140 (2)
C90.02559 (17)0.05749 (7)0.15472 (6)0.0162 (2)
H9A0.09210.03870.18280.019*
H9B0.14170.03080.17890.019*
C100.01168 (16)0.02795 (7)0.07449 (6)0.0152 (2)
C110.17455 (17)0.03233 (7)0.02807 (6)0.0177 (3)
H110.29460.05430.04720.021*
C120.16313 (17)0.00478 (7)0.04609 (6)0.0172 (3)
H120.27500.00830.07740.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0305 (5)0.0127 (4)0.0254 (4)0.0002 (3)0.0012 (4)0.0010 (3)
O20.0239 (4)0.0099 (4)0.0138 (4)0.0011 (3)0.0001 (3)0.0015 (3)
C10.0278 (6)0.0157 (5)0.0176 (6)0.0019 (4)0.0012 (5)0.0030 (4)
C20.0145 (5)0.0141 (5)0.0210 (6)0.0010 (4)0.0013 (4)0.0016 (4)
C30.0131 (5)0.0136 (5)0.0171 (6)0.0001 (4)0.0001 (4)0.0005 (4)
C40.0172 (5)0.0133 (5)0.0207 (6)0.0000 (4)0.0002 (4)0.0032 (4)
C50.0186 (6)0.0213 (6)0.0162 (6)0.0008 (4)0.0001 (4)0.0056 (4)
C60.0174 (5)0.0208 (6)0.0150 (6)0.0007 (4)0.0002 (4)0.0019 (4)
C70.0165 (5)0.0134 (5)0.0182 (6)0.0001 (4)0.0005 (4)0.0000 (4)
C80.0127 (5)0.0147 (5)0.0147 (5)0.0003 (4)0.0004 (4)0.0022 (4)
C90.0229 (6)0.0097 (5)0.0159 (5)0.0000 (4)0.0001 (4)0.0002 (4)
C100.0220 (6)0.0082 (5)0.0153 (5)0.0018 (4)0.0010 (4)0.0005 (4)
C110.0177 (6)0.0150 (5)0.0204 (6)0.0019 (4)0.0020 (4)0.0019 (4)
C120.0191 (6)0.0134 (5)0.0193 (6)0.0001 (4)0.0028 (4)0.0008 (4)
Geometric parameters (Å, º) top
O1—C21.2246 (13)C6—C71.3846 (15)
O2—C81.3609 (13)C6—H60.9500
O2—C91.4401 (12)C7—C81.4002 (15)
C1—C21.5033 (15)C7—H70.9500
C1—H1A0.9800C9—C101.5029 (15)
C1—H1B0.9800C9—H9A0.9900
C1—H1C0.9800C9—H9B0.9900
C2—C31.4970 (15)C10—C12i1.3907 (16)
C3—C41.3982 (15)C10—C111.3912 (16)
C3—C81.4109 (15)C11—C121.3897 (16)
C4—C51.3783 (16)C11—H110.9500
C4—H40.9500C12—C10i1.3908 (16)
C5—C61.3892 (16)C12—H120.9500
C5—H50.9500
C8—O2—C9116.96 (8)C6—C7—C8120.24 (10)
C2—C1—H1A109.5C6—C7—H7119.9
C2—C1—H1B109.5C8—C7—H7119.9
H1A—C1—H1B109.5O2—C8—C7122.38 (9)
C2—C1—H1C109.5O2—C8—C3117.68 (9)
H1A—C1—H1C109.5C7—C8—C3119.95 (9)
H1B—C1—H1C109.5O2—C9—C10107.45 (8)
O1—C2—C3119.09 (10)O2—C9—H9A110.2
O1—C2—C1119.05 (10)C10—C9—H9A110.2
C3—C2—C1121.86 (9)O2—C9—H9B110.2
C4—C3—C8117.69 (10)C10—C9—H9B110.2
C4—C3—C2116.40 (10)H9A—C9—H9B108.5
C8—C3—C2125.90 (10)C12i—C10—C11119.34 (10)
C5—C4—C3122.64 (10)C12i—C10—C9120.48 (10)
C5—C4—H4118.7C11—C10—C9120.18 (10)
C3—C4—H4118.7C12—C11—C10120.54 (11)
C4—C5—C6118.80 (10)C12—C11—H11119.7
C4—C5—H5120.6C10—C11—H11119.7
C6—C5—H5120.6C11—C12—C10i120.12 (11)
C7—C6—C5120.68 (10)C11—C12—H12119.9
C7—C6—H6119.7C10i—C12—H12119.9
C5—C6—H6119.7
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1ii0.952.563.4649 (14)158
Symmetry code: (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H22O4
Mr374.42
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)6.8490 (1), 15.0815 (2), 17.8519 (3)
V3)1843.98 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
15454, 2013, 1728
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.06
No. of reflections2013
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.563.4649 (14)158.3
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP001/2010 A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, T. (2010). Acta Cryst. E66, o995.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, K.-Z., Tang, Y., Li, Y.-F., Liu, W.-S. & Tan, M.-Y. (2008). Chin. J. Struct. Chem. 27, 451–454.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds