organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3058-o3059

(2E)-1-(2,5-Dimeth­­oxy­phen­yl)-3-(3-nitro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 October 2011; accepted 18 October 2011; online 29 October 2011)

In the title compound, C17H15NO5, an intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The benzene rings form a dihedral angle of 6.45 (7)° with each other. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(8) loops. Adjacent dimers are further connected by C—H⋯O hydrogen bonds into an infinite chain along the [011] direction.

Related literature

For biological activities of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). For the structures of chalcone derivatives, see: Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]); Baktır et al. (2011a[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262-o1263.],b[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292-o1293.]). For related crystal structures, see: Jasinski et al. (2008[Jasinski, J. P., Butcher, R. J., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o1-o2.]); Sarojini et al. (2007[Sarojini, B. K., Yathirajan, H. S., Lakshmana, K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o3211.]); Ma (2007[Ma, J.-L. (2007). Acta Cryst. E63, o808-o809.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO5

  • Mr = 313.30

  • Triclinic, [P \overline 1]

  • a = 7.5015 (5) Å

  • b = 7.9962 (5) Å

  • c = 13.2468 (8) Å

  • α = 86.507 (1)°

  • β = 80.342 (1)°

  • γ = 76.332 (1)°

  • V = 760.96 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.41 × 0.38 × 0.13 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.987

  • 16631 measured reflections

  • 4381 independent reflections

  • 3195 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.179

  • S = 1.02

  • 4381 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.93 2.55 3.4773 (18) 172
C8—H8A⋯O1 0.93 2.12 2.7727 (16) 126
C17—H17A⋯O5ii 0.96 2.50 3.309 (2) 142
Symmetry codes: (i) -x, -y, -z; (ii) x, y-1, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones can be easily obtained from the Claisen–Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al., 1999). The basic skeleton of chalcones which possess the α,β-unsaturated carbonyl group is a useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010; Baktır et al., 2011a,b). The crystal structures of some related chalcones which contain the nitro and methoxy groups viz: (2E)-3-(4-methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Jasinski et al., 2008), (2E)-3-(2-chlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Sarojini et al., 2007) and (E)-3-(4-methoxyphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Ma, 2007) have been reported. In view of the importance of chalcones, the crystal structure of the title compound is reported here.

The molecular structure of the title compound is shown in Fig. 1. The benzene rings (C1–C6 and C10–C15) make a dihedral angle of 6.45 (7)° with each other. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Jasinski et al., 2008; Sarojini et al., 2007; Ma, 2007). The molecular structure is stabilized by an intramolecular C8—H8A···O1 hydrogen bond (Table 1) which generates an S(6) ring motif (Fig. 1; Bernstein et al., 1995).

In the crystal structure (Fig. 2), the molecules are interconnected by C3—H3A···O2 hydrogen bonds (Table 1), forming a dimer with an R22(8) ring motif. These dimers are further linked by intermolecular C17—H17A···O5 hydrogen bonds into an infinite chains along the [011] direction.

Related literature top

For biological activities of chalcones, see: Dimmock et al. (1999). For the structures of chalcone derivatives, see: Samshuddin et al. (2010); Fun et al. (2010a,b); Jasinski et al. (2010); Baktır et al. (2011a,b). For related crystal structures, see: Jasinski et al. (2008); Sarojini et al. (2007); Ma (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a mixture of 2,5-dimethoxy acetophenone (1.5 ml, 0.01 mol) and 3-nitrobenzaldehyde (1.51 g, 0.01 mol) in ethanol (50 ml), 10 ml of 10% sodium hydroxide solution was added and stirred at 5–10 °C for 3 h. The precipitate formed was collected by filtration and then purified by recrystallization from ethanol. The single crystals were grown from a DMF solution by slow evaporation method (m.p. 377–379 K).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the a axis. The dashed lines represent the hydrogen bonds.
(2E)-1-(2,5-Dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one top
Crystal data top
C17H15NO5Z = 2
Mr = 313.30F(000) = 328
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5015 (5) ÅCell parameters from 5160 reflections
b = 7.9962 (5) Åθ = 2.6–32.3°
c = 13.2468 (8) ŵ = 0.10 mm1
α = 86.507 (1)°T = 296 K
β = 80.342 (1)°Block, yellow
γ = 76.332 (1)°0.41 × 0.38 × 0.13 mm
V = 760.96 (8) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4381 independent reflections
Radiation source: fine-focus sealed tube3195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.960, Tmax = 0.987k = 1111
16631 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1091P)2 + 0.0754P]
where P = (Fo2 + 2Fc2)/3
4381 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H15NO5γ = 76.332 (1)°
Mr = 313.30V = 760.96 (8) Å3
Triclinic, P1Z = 2
a = 7.5015 (5) ÅMo Kα radiation
b = 7.9962 (5) ŵ = 0.10 mm1
c = 13.2468 (8) ÅT = 296 K
α = 86.507 (1)°0.41 × 0.38 × 0.13 mm
β = 80.342 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4381 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3195 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.987Rint = 0.021
16631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
4381 reflectionsΔρmin = 0.22 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15506 (16)0.16718 (11)0.39750 (8)0.0591 (3)
O20.11277 (18)0.21224 (13)0.07147 (7)0.0671 (3)
O30.3565 (2)0.36287 (12)0.39765 (9)0.0802 (4)
O40.2174 (3)0.37169 (16)0.74170 (13)0.0989 (5)
O50.3301 (3)0.3286 (2)0.88284 (13)0.1121 (6)
N10.2941 (2)0.2780 (2)0.80490 (12)0.0729 (4)
C10.14468 (17)0.07338 (14)0.31743 (9)0.0409 (3)
C20.07436 (19)0.15014 (15)0.23001 (10)0.0487 (3)
H2A0.03120.26900.22650.058*
C30.0682 (2)0.05257 (17)0.14937 (10)0.0502 (3)
H3A0.02280.10570.09140.060*
C40.12955 (19)0.12516 (16)0.15424 (9)0.0458 (3)
C50.19828 (17)0.20273 (14)0.23995 (9)0.0419 (3)
H5A0.23910.32190.24290.050*
C60.20797 (16)0.10584 (13)0.32289 (8)0.0381 (2)
C70.29087 (19)0.20926 (14)0.40881 (9)0.0452 (3)
C80.2943 (2)0.12935 (16)0.50575 (9)0.0497 (3)
H8A0.23640.01370.51480.060*
C90.37566 (19)0.21468 (15)0.57977 (9)0.0460 (3)
H9A0.43340.33000.56890.055*
C100.38354 (17)0.14415 (15)0.67833 (8)0.0419 (3)
C110.33505 (18)0.03198 (16)0.69527 (9)0.0455 (3)
H11A0.29670.10940.64360.055*
C120.34453 (19)0.09026 (18)0.78952 (10)0.0522 (3)
C130.3995 (2)0.0188 (2)0.86864 (11)0.0644 (4)
H13A0.40440.02400.93160.077*
C140.4467 (2)0.1924 (2)0.85189 (11)0.0685 (4)
H14A0.48390.26850.90440.082*
C150.4399 (2)0.25623 (18)0.75773 (10)0.0542 (3)
H15A0.47320.37430.74760.065*
C160.0965 (3)0.34867 (17)0.39303 (15)0.0703 (5)
H16A0.11640.39560.45410.105*
H16B0.03330.38080.38760.105*
H16C0.16650.39280.33440.105*
C170.1863 (3)0.3918 (2)0.07001 (13)0.0749 (5)
H17A0.17410.43570.00630.112*
H17B0.11950.44610.12560.112*
H17C0.31520.41580.07720.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0856 (7)0.0345 (4)0.0589 (6)0.0060 (4)0.0224 (5)0.0149 (4)
O20.0998 (9)0.0582 (6)0.0452 (5)0.0064 (5)0.0298 (5)0.0119 (4)
O30.1363 (12)0.0367 (5)0.0692 (7)0.0086 (6)0.0573 (7)0.0125 (4)
O40.1368 (14)0.0526 (7)0.1063 (11)0.0103 (8)0.0283 (10)0.0141 (7)
O50.1285 (13)0.1081 (11)0.1059 (11)0.0205 (10)0.0210 (10)0.0706 (9)
N10.0739 (9)0.0682 (8)0.0789 (9)0.0184 (7)0.0019 (7)0.0394 (7)
C10.0446 (6)0.0331 (5)0.0452 (6)0.0076 (4)0.0069 (4)0.0070 (4)
C20.0549 (7)0.0347 (5)0.0548 (7)0.0055 (5)0.0117 (5)0.0014 (5)
C30.0566 (7)0.0475 (6)0.0456 (6)0.0065 (5)0.0153 (5)0.0041 (5)
C40.0543 (7)0.0467 (6)0.0374 (5)0.0092 (5)0.0113 (5)0.0068 (4)
C50.0517 (7)0.0342 (5)0.0396 (5)0.0050 (4)0.0113 (5)0.0071 (4)
C60.0440 (6)0.0332 (5)0.0374 (5)0.0066 (4)0.0085 (4)0.0057 (4)
C70.0595 (7)0.0365 (5)0.0418 (6)0.0074 (5)0.0172 (5)0.0058 (4)
C80.0688 (8)0.0402 (6)0.0402 (6)0.0060 (5)0.0158 (5)0.0082 (4)
C90.0570 (7)0.0386 (5)0.0439 (6)0.0076 (5)0.0149 (5)0.0072 (4)
C100.0441 (6)0.0451 (6)0.0376 (5)0.0091 (5)0.0100 (4)0.0048 (4)
C110.0509 (7)0.0473 (6)0.0404 (6)0.0124 (5)0.0090 (5)0.0070 (4)
C120.0499 (7)0.0577 (7)0.0500 (7)0.0112 (6)0.0058 (5)0.0204 (6)
C130.0604 (9)0.0892 (11)0.0426 (7)0.0066 (8)0.0139 (6)0.0193 (7)
C140.0716 (10)0.0849 (11)0.0427 (7)0.0005 (8)0.0199 (6)0.0043 (7)
C150.0583 (8)0.0526 (7)0.0484 (7)0.0022 (6)0.0151 (6)0.0014 (5)
C160.0901 (12)0.0352 (6)0.0849 (11)0.0072 (7)0.0160 (9)0.0185 (7)
C170.1071 (14)0.0604 (9)0.0567 (8)0.0066 (9)0.0215 (8)0.0245 (7)
Geometric parameters (Å, º) top
O1—C11.3585 (13)C8—H8A0.9300
O1—C161.4140 (15)C9—C101.4689 (15)
O2—C41.3725 (13)C9—H9A0.9300
O2—C171.4114 (18)C10—C111.3911 (16)
O3—C71.2186 (14)C10—C151.3941 (16)
O4—N11.214 (2)C11—C121.3775 (16)
O5—N11.2241 (18)C11—H11A0.9300
N1—C121.477 (2)C12—C131.375 (2)
C1—C21.4006 (17)C13—C141.372 (2)
C1—C61.4007 (14)C13—H13A0.9300
C2—C31.3736 (18)C14—C151.3894 (19)
C2—H2A0.9300C14—H14A0.9300
C3—C41.3876 (17)C15—H15A0.9300
C3—H3A0.9300C16—H16A0.9600
C4—C51.3781 (16)C16—H16B0.9600
C5—C61.4035 (14)C16—H16C0.9600
C5—H5A0.9300C17—H17A0.9600
C6—C71.4986 (15)C17—H17B0.9600
C7—C81.4754 (15)C17—H17C0.9600
C8—C91.3121 (17)
C1—O1—C16119.72 (11)C10—C9—H9A117.1
C4—O2—C17117.66 (10)C11—C10—C15118.74 (11)
O4—N1—O5124.18 (17)C11—C10—C9121.88 (10)
O4—N1—C12118.90 (13)C15—C10—C9119.38 (11)
O5—N1—C12116.90 (18)C12—C11—C10119.18 (12)
O1—C1—C2122.18 (10)C12—C11—H11A120.4
O1—C1—C6118.48 (10)C10—C11—H11A120.4
C2—C1—C6119.33 (10)C13—C12—C11122.74 (13)
C3—C2—C1121.03 (11)C13—C12—N1119.30 (13)
C3—C2—H2A119.5C11—C12—N1117.96 (13)
C1—C2—H2A119.5C14—C13—C12118.00 (12)
C2—C3—C4120.09 (11)C14—C13—H13A121.0
C2—C3—H3A120.0C12—C13—H13A121.0
C4—C3—H3A120.0C13—C14—C15121.00 (13)
O2—C4—C5124.45 (11)C13—C14—H14A119.5
O2—C4—C3115.96 (10)C15—C14—H14A119.5
C5—C4—C3119.58 (10)C14—C15—C10120.34 (13)
C4—C5—C6121.45 (10)C14—C15—H15A119.8
C4—C5—H5A119.3C10—C15—H15A119.8
C6—C5—H5A119.3O1—C16—H16A109.5
C1—C6—C5118.51 (10)O1—C16—H16B109.5
C1—C6—C7126.70 (9)H16A—C16—H16B109.5
C5—C6—C7114.78 (9)O1—C16—H16C109.5
O3—C7—C8119.73 (10)H16A—C16—H16C109.5
O3—C7—C6118.73 (10)H16B—C16—H16C109.5
C8—C7—C6121.54 (10)O2—C17—H17A109.5
C9—C8—C7122.75 (11)O2—C17—H17B109.5
C9—C8—H8A118.6H17A—C17—H17B109.5
C7—C8—H8A118.6O2—C17—H17C109.5
C8—C9—C10125.75 (11)H17A—C17—H17C109.5
C8—C9—H9A117.1H17B—C17—H17C109.5
C16—O1—C1—C21.1 (2)C5—C6—C7—C8173.92 (12)
C16—O1—C1—C6178.45 (13)O3—C7—C8—C94.2 (2)
O1—C1—C2—C3178.92 (12)C6—C7—C8—C9175.88 (13)
C6—C1—C2—C30.6 (2)C7—C8—C9—C10179.56 (12)
C1—C2—C3—C41.0 (2)C8—C9—C10—C1112.8 (2)
C17—O2—C4—C56.0 (2)C8—C9—C10—C15166.73 (14)
C17—O2—C4—C3175.36 (15)C15—C10—C11—C120.15 (19)
C2—C3—C4—O2178.06 (13)C9—C10—C11—C12179.72 (12)
C2—C3—C4—C50.6 (2)C10—C11—C12—C130.3 (2)
O2—C4—C5—C6178.65 (12)C10—C11—C12—N1179.37 (12)
C3—C4—C5—C60.1 (2)O4—N1—C12—C13168.10 (17)
O1—C1—C6—C5179.64 (11)O5—N1—C12—C1310.5 (2)
C2—C1—C6—C50.08 (18)O4—N1—C12—C1112.2 (2)
O1—C1—C6—C70.96 (19)O5—N1—C12—C11169.16 (15)
C2—C1—C6—C7178.60 (12)C11—C12—C13—C140.1 (2)
C4—C5—C6—C10.41 (19)N1—C12—C13—C14179.54 (15)
C4—C5—C6—C7178.42 (12)C12—C13—C14—C150.2 (3)
C1—C6—C7—O3172.69 (14)C13—C14—C15—C100.4 (2)
C5—C6—C7—O36.03 (19)C11—C10—C15—C140.2 (2)
C1—C6—C7—C87.4 (2)C9—C10—C15—C14179.40 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.553.4773 (18)172
C8—H8A···O10.932.122.7727 (16)126
C17—H17A···O5ii0.962.503.309 (2)142
Symmetry codes: (i) x, y, z; (ii) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC17H15NO5
Mr313.30
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5015 (5), 7.9962 (5), 13.2468 (8)
α, β, γ (°)86.507 (1), 80.342 (1), 76.332 (1)
V3)760.96 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.38 × 0.13
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
16631, 4381, 3195
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.179, 1.02
No. of reflections4381
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.93002.55003.4773 (18)172.00
C8—H8A···O10.93002.12002.7727 (16)126.00
C17—H17A···O5ii0.96002.50003.309 (2)142.00
Symmetry codes: (i) x, y, z; (ii) x, y1, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under a Research University Grant (No. 1001/PSKBP/8630013). BN thanks UGC-New Delhi, Government of India, for financial assistance for the purchase of chemicals through a BSR one-off grant.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o1–o2.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, J.-L. (2007). Acta Cryst. E63, o808–o809.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Lakshmana, K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o3211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3058-o3059
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds