metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,3-Di-2-pyridyl­pyrazine-κ2N2,N3)di­iodidopalladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 22 October 2011; accepted 23 October 2011; online 29 October 2011)

The PdII ion in the title complex, [PdI2(C14H10N4)], is four-coordinated in a slightly distorted square-planar environment by the two pyridine N atoms of the chelating 2,3-di-2-pyridyl­pyrazine (dpp) ligand and two iodide anions. In the crystal, the pyridine rings are considerably inclined to the least-squares plane of the PdI2N2 unit [maximum deviation = 0.090 (2) Å], making dihedral angles of 65.0 (2) and 66.6 (2)°. The pyrazine ring is perpendicular to the unit plane, with a dihedral angle of 89.9 (2)°. The complex mol­ecules are connected by C—H⋯I hydrogen bonds, forming a helical chain along the b axis.

Related literature

For the crystal structure of the yellow form of [PtBr2(dpp)] which is isotypic to the title complex, see: Ha (2011[Ha, K. (2011). Acta Cryst. E67, m1307.]).

[Scheme 1]

Experimental

Crystal data
  • [PdI2(C14H10N4)]

  • Mr = 594.46

  • Monoclinic, P 21 /n

  • a = 8.7936 (12) Å

  • b = 15.528 (2) Å

  • c = 12.3351 (17) Å

  • β = 102.118 (3)°

  • V = 1646.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.87 mm−1

  • T = 200 K

  • 0.42 × 0.31 × 0.29 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.183, Tmax = 0.243

  • 10659 measured reflections

  • 3513 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.05

  • 3513 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.42 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—N3 2.050 (5)
Pd1—N4 2.056 (5)
Pd1—I1 2.5761 (7)
Pd1—I2 2.5898 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯I1i 0.95 2.99 3.776 (7) 141
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PdI2(dpp)] (dpp is 2,3-di-2-pyridylpyrazine, C14H10N4), is isomorphous with the yellow form of [PtBr2(dpp)] (Ha, 2011). The PdII ion is four-coordinated in a slightly distorted square-planar environment by the two pyridyl N atoms of the chelating dpp ligand and two iodide anions (Fig. 1). The contributions to the distortion are the N3—Pd1—N4 chelate angle of 87.17 (19)° and I—I repelling, and therefore the trans axes are slightly bent [<I1—Pd1—N4 = 173.87 (13)° and <I2—Pd1—N3 = 176.70 (13)°]. The Pd—N and Pd—I bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the two pyridyl rings are considerably inclined to the least-squares plane of the PdI2N2 unit [maximum deviation = 0.090 (2) Å] with dihedral angles of 65.0 (2) and 66.6 (2)°, respectively. The nearly planar pyrazine ring [maximum deviation = 0.014 (4) Å] is perpendicular to the unit plane with a dihedral angle of 89.9 (2)°. The dihedral angle between the two pyridyl rings is 78.6 (2)°. The complexes are connected by C—H···I hydrogen bonds, forming a helical chain running along the b axis (Fig. 2 and Table 2), and stacked in columns along the a axis. When viewed down the b axis, the successive complexes stack in the opposite direction. In the columns, numerous inter- and intramolecular ππ interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.969 (4) Å.

Related literature top

For the crystal structure of the yellow form of [PtBr2(dpp)] which is isotypic to the title complex, see: Ha (2011).

Experimental top

To a solution of Na2PdCl4 (0.1464 g, 0.498 mmol) and KI (0.7790 g, 4.693 mmol) in MeOH (30 ml) was added 2,3-di-2-pyridylpyrazine (0.1183 g, 0.505 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration, washed with MeOH and acetone, and dried at 50 °C, to give a redbrown powder (0.2537 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (1.27 e Å-3) and the deepest hole (-1.41 e Å-3) in the difference Fourier map are located 0.72 Å and 0.59 Å from the atoms I2 and I1, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 40% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the hydrogen-bond interactions of the title complex. Hydrogen-bonds are drawn with dashed lines.
(2,3-Di-2-pyridylpyrazine-κ2N2,N3)diiodidopalladium(II) top
Crystal data top
[PdI2(C14H10N4)]F(000) = 1096
Mr = 594.46Dx = 2.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7148 reflections
a = 8.7936 (12) Åθ = 2.4–27.0°
b = 15.528 (2) ŵ = 4.87 mm1
c = 12.3351 (17) ÅT = 200 K
β = 102.118 (3)°Block, red-brown
V = 1646.8 (4) Å30.42 × 0.31 × 0.29 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3513 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1110
Tmin = 0.183, Tmax = 0.243k = 1919
10659 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0477P)2 + 7.4036P]
where P = (Fo2 + 2Fc2)/3
3513 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 1.42 e Å3
Crystal data top
[PdI2(C14H10N4)]V = 1646.8 (4) Å3
Mr = 594.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7936 (12) ŵ = 4.87 mm1
b = 15.528 (2) ÅT = 200 K
c = 12.3351 (17) Å0.42 × 0.31 × 0.29 mm
β = 102.118 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3513 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2968 reflections with I > 2σ(I)
Tmin = 0.183, Tmax = 0.243Rint = 0.022
10659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 1.28 e Å3
3513 reflectionsΔρmin = 1.42 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.46673 (5)0.06358 (3)0.67952 (3)0.03147 (13)
I10.61860 (5)0.07875 (3)0.68473 (4)0.04827 (15)
I20.71972 (6)0.15314 (3)0.73389 (4)0.05207 (16)
N10.1852 (6)0.0054 (3)0.9114 (4)0.0419 (12)
N20.2351 (7)0.1813 (4)0.9159 (5)0.0473 (13)
N30.2628 (5)0.0048 (3)0.6446 (4)0.0314 (10)
N40.3330 (6)0.1733 (3)0.6587 (4)0.0375 (11)
C10.2007 (6)0.0473 (4)0.8187 (5)0.0332 (12)
C20.2265 (7)0.1360 (4)0.8211 (5)0.0347 (12)
C30.2229 (9)0.1385 (5)1.0064 (6)0.0516 (17)
H30.23040.16901.07400.062*
C40.1993 (9)0.0498 (4)1.0047 (6)0.0495 (16)
H40.19320.02071.07140.059*
C50.1683 (6)0.0075 (3)0.7174 (5)0.0309 (11)
C60.0425 (7)0.0623 (4)0.7030 (6)0.0430 (15)
H60.02160.06420.75610.052*
C70.0103 (7)0.1154 (4)0.6092 (6)0.0485 (16)
H70.07530.15410.59810.058*
C80.1045 (7)0.1106 (4)0.5334 (5)0.0418 (14)
H80.08440.14520.46840.050*
C90.2272 (7)0.0552 (4)0.5534 (5)0.0385 (13)
H90.29130.05170.50040.046*
C100.2329 (7)0.1913 (4)0.7239 (5)0.0374 (13)
C110.1398 (8)0.2639 (4)0.7055 (6)0.0470 (16)
H110.07110.27680.75330.056*
C120.1467 (10)0.3171 (4)0.6187 (6)0.0558 (19)
H120.08200.36650.60500.067*
C130.2478 (10)0.2984 (4)0.5515 (6)0.0554 (19)
H130.25430.33480.49070.067*
C140.3406 (9)0.2259 (4)0.5733 (5)0.0497 (16)
H140.41130.21300.52700.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0364 (2)0.0300 (2)0.0295 (2)0.00616 (17)0.01056 (17)0.00251 (16)
I10.0419 (3)0.0503 (3)0.0548 (3)0.00162 (18)0.01512 (19)0.00031 (19)
I20.0562 (3)0.0592 (3)0.0431 (3)0.0268 (2)0.0154 (2)0.0105 (2)
N10.053 (3)0.037 (3)0.036 (3)0.003 (2)0.013 (2)0.002 (2)
N20.062 (4)0.039 (3)0.041 (3)0.002 (3)0.012 (3)0.011 (2)
N30.034 (2)0.026 (2)0.034 (2)0.0009 (18)0.0070 (19)0.0001 (19)
N40.054 (3)0.027 (2)0.031 (2)0.004 (2)0.007 (2)0.0016 (19)
C10.032 (3)0.034 (3)0.034 (3)0.001 (2)0.007 (2)0.006 (2)
C20.038 (3)0.030 (3)0.037 (3)0.001 (2)0.010 (2)0.004 (2)
C30.072 (5)0.048 (4)0.038 (4)0.002 (3)0.018 (3)0.009 (3)
C40.068 (5)0.044 (4)0.040 (4)0.001 (3)0.019 (3)0.004 (3)
C50.034 (3)0.026 (3)0.034 (3)0.001 (2)0.010 (2)0.003 (2)
C60.034 (3)0.055 (4)0.044 (4)0.009 (3)0.017 (3)0.009 (3)
C70.037 (3)0.046 (4)0.062 (4)0.012 (3)0.008 (3)0.014 (3)
C80.047 (4)0.038 (3)0.039 (3)0.005 (3)0.004 (3)0.014 (3)
C90.048 (3)0.037 (3)0.031 (3)0.000 (3)0.008 (2)0.007 (2)
C100.050 (3)0.026 (3)0.033 (3)0.004 (2)0.001 (3)0.003 (2)
C110.053 (4)0.033 (3)0.052 (4)0.003 (3)0.003 (3)0.004 (3)
C120.069 (5)0.029 (3)0.060 (4)0.000 (3)0.008 (4)0.004 (3)
C130.092 (6)0.032 (3)0.036 (3)0.007 (3)0.001 (4)0.004 (3)
C140.071 (5)0.041 (3)0.036 (3)0.011 (3)0.008 (3)0.001 (3)
Geometric parameters (Å, º) top
Pd1—N32.050 (5)C4—H40.9500
Pd1—N42.056 (5)C5—C61.378 (8)
Pd1—I12.5761 (7)C6—C71.400 (9)
Pd1—I22.5898 (6)C6—H60.9500
N1—C41.326 (8)C7—C81.375 (10)
N1—C11.347 (8)C7—H70.9500
N2—C31.321 (9)C8—C91.362 (9)
N2—C21.353 (8)C8—H80.9500
N3—C51.346 (7)C9—H90.9500
N3—C91.352 (7)C10—C111.384 (9)
N4—C101.340 (8)C11—C121.363 (10)
N4—C141.346 (8)C11—H110.9500
C1—C21.395 (8)C12—C131.367 (12)
C1—C51.489 (7)C12—H120.9500
C2—C101.486 (8)C13—C141.383 (11)
C3—C41.393 (10)C13—H130.9500
C3—H30.9500C14—H140.9500
N3—Pd1—N487.17 (19)C6—C5—C1117.9 (5)
N3—Pd1—I189.26 (13)C5—C6—C7119.2 (6)
N4—Pd1—I1173.87 (13)C5—C6—H6120.4
N3—Pd1—I2176.70 (13)C7—C6—H6120.4
N4—Pd1—I291.43 (14)C8—C7—C6118.9 (6)
I1—Pd1—I292.38 (2)C8—C7—H7120.5
C4—N1—C1118.5 (5)C6—C7—H7120.5
C3—N2—C2118.0 (6)C9—C8—C7118.6 (6)
C5—N3—C9118.0 (5)C9—C8—H8120.7
C5—N3—Pd1120.7 (4)C7—C8—H8120.7
C9—N3—Pd1120.9 (4)N3—C9—C8123.6 (6)
C10—N4—C14119.3 (6)N3—C9—H9118.2
C10—N4—Pd1121.9 (4)C8—C9—H9118.2
C14—N4—Pd1118.7 (5)N4—C10—C11120.8 (6)
N1—C1—C2120.3 (5)N4—C10—C2120.3 (5)
N1—C1—C5113.6 (5)C11—C10—C2118.9 (6)
C2—C1—C5125.7 (5)C12—C11—C10120.0 (7)
N2—C2—C1120.7 (6)C12—C11—H11120.0
N2—C2—C10113.1 (5)C10—C11—H11120.0
C1—C2—C10126.0 (5)C11—C12—C13119.3 (7)
N2—C3—C4121.5 (6)C11—C12—H12120.4
N2—C3—H3119.2C13—C12—H12120.4
C4—C3—H3119.2C12—C13—C14119.2 (7)
N1—C4—C3120.9 (6)C12—C13—H13120.4
N1—C4—H4119.5C14—C13—H13120.4
C3—C4—H4119.5N4—C14—C13121.4 (7)
N3—C5—C6121.6 (5)N4—C14—H14119.3
N3—C5—C1120.4 (5)C13—C14—H14119.3
N4—Pd1—N3—C570.8 (4)N1—C1—C5—C642.3 (7)
I1—Pd1—N3—C5114.2 (4)C2—C1—C5—C6130.1 (7)
N4—Pd1—N3—C9116.0 (4)N3—C5—C6—C71.3 (10)
I1—Pd1—N3—C959.1 (4)C1—C5—C6—C7179.2 (6)
N3—Pd1—N4—C1062.2 (5)C5—C6—C7—C80.6 (11)
I2—Pd1—N4—C10114.8 (4)C6—C7—C8—C91.0 (10)
N3—Pd1—N4—C14114.1 (5)C5—N3—C9—C82.4 (9)
I2—Pd1—N4—C1468.9 (5)Pd1—N3—C9—C8171.0 (5)
C4—N1—C1—C21.8 (9)C7—C8—C9—N30.6 (10)
C4—N1—C1—C5174.7 (6)C14—N4—C10—C111.2 (9)
C3—N2—C2—C12.0 (10)Pd1—N4—C10—C11177.5 (4)
C3—N2—C2—C10176.8 (6)C14—N4—C10—C2177.7 (5)
N1—C1—C2—N20.6 (9)Pd1—N4—C10—C26.0 (7)
C5—C1—C2—N2171.4 (6)N2—C2—C10—N4129.4 (6)
N1—C1—C2—C10174.7 (6)C1—C2—C10—N456.1 (8)
C5—C1—C2—C102.7 (10)N2—C2—C10—C1147.2 (8)
C2—N2—C3—C41.1 (11)C1—C2—C10—C11127.3 (7)
C1—N1—C4—C32.7 (10)N4—C10—C11—C121.6 (10)
N2—C3—C4—N11.3 (12)C2—C10—C11—C12178.1 (6)
C9—N3—C5—C62.8 (8)C10—C11—C12—C131.0 (10)
Pd1—N3—C5—C6170.7 (5)C11—C12—C13—C140.1 (11)
C9—N3—C5—C1179.4 (5)C10—N4—C14—C130.3 (9)
Pd1—N3—C5—C17.2 (7)Pd1—N4—C14—C13176.7 (5)
N1—C1—C5—N3135.7 (6)C12—C13—C14—N40.3 (11)
C2—C1—C5—N351.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···I1i0.952.993.776 (7)141
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[PdI2(C14H10N4)]
Mr594.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.7936 (12), 15.528 (2), 12.3351 (17)
β (°) 102.118 (3)
V3)1646.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.87
Crystal size (mm)0.42 × 0.31 × 0.29
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.183, 0.243
No. of measured, independent and
observed [I > 2σ(I)] reflections
10659, 3513, 2968
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.05
No. of reflections3513
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 1.42

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pd1—N32.050 (5)Pd1—I12.5761 (7)
Pd1—N42.056 (5)Pd1—I22.5898 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···I1i0.952.993.776 (7)141.1
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626). The author thanks the KBSI, Jeonju Center, for the X-ray data collection.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Acta Cryst. E67, m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds