organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2,4-Di­fluoro­phen­yl)hydrazinyl­­idene]-3-methyl-5-oxo-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title compound, C11H9F2N5OS, the pyrazole ring forms a dihedral angle of 16.42 (6)° with the benzene ring. Intra­molecular N—H⋯O hydrogen bonds generate two S(6) ring motifs. In the crystal, an R22(8) ring motif is formed by a pair of inter­molecular N—H⋯S hydrogen bonds. Inter­molecular C—H⋯F hydrogen bonds further link the mol­ecules into a three-dimensional network.

Related literature

For the biological activity of pyrazole derivatives, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Bradbury & Pucci (2008[Bradbury, B. J. & Pucci, M. J. (2008). Curr. Opin. Pharmacol. 8, 574-581.]); Girisha et al. (2010[Girisha, K.S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Shetty, S. & Kalluraya, B. K. (2011). Acta Cryst. E67, o2570.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986)[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.].

[Scheme 1]

Experimental

Crystal data
  • C11H9F2N5OS

  • Mr = 297.29

  • Triclinic, [P \overline 1]

  • a = 7.9003 (1) Å

  • b = 8.2400 (1) Å

  • c = 10.1378 (1) Å

  • α = 103.409 (1)°

  • β = 99.864 (1)°

  • γ = 99.372 (1)°

  • V = 618.18 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.41 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.977

  • 15661 measured reflections

  • 4211 independent reflections

  • 3546 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.06

  • 4211 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.863 (17) 2.080 (17) 2.7605 (13) 135.2 (15)
N5—H1N5⋯S1i 0.842 (17) 2.607 (17) 3.4279 (11) 165.5 (15)
N5—H2N5⋯O1 0.880 (17) 2.048 (17) 2.7208 (13) 132.5 (14)
C10—H10A⋯F1ii 0.98 2.47 3.3016 (14) 143
C10—H10C⋯F1iii 0.98 2.53 3.2775 (14) 133
C10—H10C⋯F2iv 0.98 2.55 3.2145 (14) 125
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z+1; (iii) -x, -y+2, -z; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrazole ring is a prominent structural moiety found in numerous pharmaceutically active compounds. This is mainly due to the easy preparation and the important pharmacological activity. Therefore, the synthesis and selective functionalization of pyrazoles have been focus of active research area over the years (Isloor et al., 2009). Pyrazoles have been reported to possess antibacterial activity (Rai et al., 2008), and found to posses inhibitor activity against DNA gyrase and topoisomerase IV at their respective ATP-binding sites (Bradbury & Pucci, 2008). Moreover, pyrazole-containing compounds have received considerable attention owing to their diverse chemotherapeutic potentials including versatile anti-inflammatory and antimicrobial activities (Girisha et al., 2010). The synthetic route followed for obtaining the title compound (I) involves the diazotization of substituted anilines to give the diazonium salts followed by coupling with ethyl acetoacetate in the presence of sodium acetate to give the corresponding oxobutanoate which on further reaction with thiosemicarbazide in acetic acid gave the required thioamides.

In the title compound of (I), (Fig. 1), the pyrazole (N3/N4/C7–C9) ring is essentially planar, with a maximum deviation of 0.007 (1) Å for atom C9 and makes a dihedral angle of 16.42 (6)° with the benzene (C1–C6) ring. The intramolecular N1—H1N1···O1 and N5—H2N5···O1 hydrogen bonds generate two S(6) ring motifs (Bernstein et al., 1995). The geometric parameters are consistent to those observed in a closely related structure (Fun et al., 2011).

In the crystal structure, (Fig. 2), an R22(8) ring motif is formed by intermolecular N5—H1N5···S1 hydrogen bonds (Table 1). Intermolecular C10—H10A···F1, C10—H10C···F1 and C10—H10C···F2 (Table 1) hydrogen bonds further link the molecules into a three- dimensional network.

Related literature top

For the biological activity of pyrazole derivatives, see: Isloor et al. (2009); Rai et al. (2008); Bradbury & Pucci (2008); Girisha et al. (2010). For a related structure, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of ethyl-2-[(2,4-difluorophenyl)hydrazono]-3-oxobutanoate (0.01 mol) dissolved in glacial acetic acid (15 ml), a solution of thiosemicarbazide (0.02 mol) in glacial acetic acid (15 ml) was added and the mixture was refluxed for 4 h. It is cooled and allowed to stand overnight. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement top

Atoms H1N1, H1N5 and H2N5 were located in a difference Fourier map and refined freely [N—H = 0.866 (17), 0.840 (18) and 0.878 (17) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and refined riding on their carrier atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atoms for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the b-axis, showing the molecules formed a into three-dimensional network. Hydrogen atoms that not involved in hydrogen bonding (dashed lines) are omitted for clarity.
4-[(2,4-Difluorophenyl)hydrazinylidene]-3-methyl-5-oxo-4,5-dihydro- 1H-pyrazole-1-carbothioamide top
Crystal data top
C11H9F2N5OSZ = 2
Mr = 297.29F(000) = 304
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9003 (1) ÅCell parameters from 7383 reflections
b = 8.2400 (1) Åθ = 2.6–31.9°
c = 10.1378 (1) ŵ = 0.29 mm1
α = 103.409 (1)°T = 100 K
β = 99.864 (1)°Block, green
γ = 99.372 (1)°0.41 × 0.23 × 0.08 mm
V = 618.18 (1) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4211 independent reflections
Radiation source: fine-focus sealed tube3546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 31.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.890, Tmax = 0.977k = 1212
15661 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1483P]
where P = (Fo2 + 2Fc2)/3
4211 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H9F2N5OSγ = 99.372 (1)°
Mr = 297.29V = 618.18 (1) Å3
Triclinic, P1Z = 2
a = 7.9003 (1) ÅMo Kα radiation
b = 8.2400 (1) ŵ = 0.29 mm1
c = 10.1378 (1) ÅT = 100 K
α = 103.409 (1)°0.41 × 0.23 × 0.08 mm
β = 99.864 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3546 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.977Rint = 0.024
15661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
4211 reflectionsΔρmin = 0.27 e Å3
194 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21061 (4)0.24608 (3)0.56219 (3)0.01893 (8)
F10.53111 (10)0.91062 (10)0.26133 (8)0.02844 (17)
F20.43017 (9)0.41257 (8)0.13817 (7)0.02208 (15)
O10.14398 (10)0.30354 (10)0.16468 (8)0.01952 (16)
N10.15277 (12)0.58736 (12)0.06501 (10)0.01746 (17)
N20.00803 (12)0.66676 (12)0.15852 (9)0.01665 (17)
N30.08671 (12)0.38926 (11)0.36455 (9)0.01611 (17)
N40.22017 (12)0.53670 (11)0.43282 (10)0.01660 (17)
N50.06153 (13)0.11880 (12)0.34770 (11)0.02077 (19)
C10.19357 (15)0.85108 (14)0.00178 (12)0.0202 (2)
H1A0.09490.91650.07220.024*
C20.29073 (16)0.93080 (15)0.08133 (13)0.0229 (2)
H2A0.26031.05070.06810.027*
C30.43254 (15)0.83195 (15)0.18365 (12)0.0208 (2)
C40.48169 (14)0.65643 (14)0.21030 (12)0.0190 (2)
H4A0.57680.59070.28390.023*
C50.38454 (14)0.58275 (13)0.12371 (11)0.01665 (19)
C60.24060 (14)0.67551 (13)0.01797 (11)0.01630 (19)
C70.01793 (13)0.40835 (13)0.24639 (11)0.01574 (19)
C80.05592 (13)0.58088 (13)0.24210 (11)0.01541 (18)
C90.20256 (14)0.64684 (13)0.36007 (11)0.01583 (19)
C100.32130 (15)0.81794 (13)0.39924 (12)0.0200 (2)
H10A0.41100.82920.48250.030*
H10B0.25290.90640.41840.030*
H10C0.37830.83110.32270.030*
C110.07145 (14)0.24765 (13)0.41963 (11)0.01608 (19)
H1N10.198 (2)0.482 (2)0.0569 (18)0.036 (5)*
H1N50.078 (2)0.032 (2)0.3780 (19)0.036 (4)*
H2N50.138 (2)0.126 (2)0.2763 (18)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01932 (13)0.01622 (12)0.01939 (14)0.00185 (9)0.00104 (10)0.00627 (10)
F10.0254 (4)0.0287 (4)0.0295 (4)0.0030 (3)0.0064 (3)0.0154 (3)
F20.0226 (3)0.0156 (3)0.0241 (3)0.0004 (2)0.0008 (3)0.0039 (3)
O10.0175 (4)0.0184 (4)0.0183 (4)0.0008 (3)0.0013 (3)0.0032 (3)
N10.0172 (4)0.0165 (4)0.0164 (4)0.0018 (3)0.0009 (3)0.0044 (3)
N20.0170 (4)0.0175 (4)0.0143 (4)0.0034 (3)0.0018 (3)0.0032 (3)
N30.0164 (4)0.0135 (4)0.0161 (4)0.0005 (3)0.0002 (3)0.0041 (3)
N40.0164 (4)0.0134 (4)0.0170 (4)0.0000 (3)0.0003 (3)0.0027 (3)
N50.0211 (5)0.0163 (4)0.0216 (5)0.0015 (3)0.0015 (4)0.0068 (4)
C10.0194 (5)0.0186 (5)0.0185 (5)0.0011 (4)0.0028 (4)0.0038 (4)
C20.0238 (5)0.0183 (5)0.0236 (6)0.0020 (4)0.0022 (4)0.0067 (4)
C30.0195 (5)0.0231 (5)0.0193 (5)0.0038 (4)0.0010 (4)0.0089 (4)
C40.0159 (5)0.0220 (5)0.0164 (5)0.0005 (4)0.0002 (4)0.0046 (4)
C50.0166 (5)0.0160 (4)0.0157 (5)0.0009 (4)0.0030 (4)0.0031 (4)
C60.0165 (4)0.0176 (4)0.0146 (4)0.0036 (4)0.0023 (4)0.0046 (4)
C70.0152 (4)0.0163 (4)0.0147 (4)0.0028 (3)0.0022 (4)0.0033 (4)
C80.0156 (4)0.0146 (4)0.0146 (4)0.0018 (3)0.0018 (4)0.0030 (4)
C90.0164 (4)0.0146 (4)0.0152 (4)0.0025 (3)0.0022 (4)0.0030 (4)
C100.0219 (5)0.0148 (4)0.0197 (5)0.0006 (4)0.0005 (4)0.0037 (4)
C110.0164 (4)0.0143 (4)0.0170 (5)0.0030 (3)0.0029 (4)0.0041 (4)
Geometric parameters (Å, º) top
S1—C111.6633 (11)C1—C21.3893 (15)
F1—C31.3557 (12)C1—C61.3914 (15)
F2—C51.3564 (12)C1—H1A0.9500
O1—C71.2366 (13)C2—C31.3810 (16)
N1—N21.3159 (13)C2—H2A0.9500
N1—C61.4016 (13)C3—C41.3840 (16)
N1—H1N10.866 (17)C4—C51.3772 (15)
N2—C81.3122 (13)C4—H4A0.9500
N3—C71.3905 (13)C5—C61.3949 (15)
N3—C111.4026 (13)C7—C81.4597 (14)
N3—N41.4176 (12)C8—C91.4445 (14)
N4—C91.3051 (13)C9—C101.4858 (14)
N5—C111.3334 (14)C10—H10A0.9800
N5—H1N50.840 (18)C10—H10B0.9800
N5—H2N50.878 (17)C10—H10C0.9800
N2—N1—C6120.34 (9)F2—C5—C6117.21 (9)
N2—N1—H1N1120.6 (12)C4—C5—C6123.13 (10)
C6—N1—H1N1119.0 (12)C1—C6—C5118.51 (10)
C8—N2—N1116.66 (9)C1—C6—N1123.27 (10)
C7—N3—C11127.86 (9)C5—C6—N1118.20 (9)
C7—N3—N4112.25 (8)O1—C7—N3127.95 (10)
C11—N3—N4119.89 (9)O1—C7—C8128.37 (10)
C9—N4—N3106.61 (8)N3—C7—C8103.68 (9)
C11—N5—H1N5117.8 (12)N2—C8—C9126.25 (9)
C11—N5—H2N5122.4 (11)N2—C8—C7127.47 (10)
H1N5—N5—H2N5119.5 (16)C9—C8—C7105.88 (9)
C2—C1—C6120.11 (10)N4—C9—C8111.56 (9)
C2—C1—H1A119.9N4—C9—C10122.26 (10)
C6—C1—H1A119.9C8—C9—C10126.18 (9)
C3—C2—C1118.57 (10)C9—C10—H10A109.5
C3—C2—H2A120.7C9—C10—H10B109.5
C1—C2—H2A120.7H10A—C10—H10B109.5
F1—C3—C2118.52 (10)C9—C10—H10C109.5
F1—C3—C4117.86 (10)H10A—C10—H10C109.5
C2—C3—C4123.62 (10)H10B—C10—H10C109.5
C5—C4—C3116.00 (10)N5—C11—N3114.10 (9)
C5—C4—H4A122.0N5—C11—S1124.50 (8)
C3—C4—H4A122.0N3—C11—S1121.40 (8)
F2—C5—C4119.65 (10)
C6—N1—N2—C8172.87 (9)N4—N3—C7—O1179.75 (10)
C7—N3—N4—C90.44 (12)C11—N3—C7—C8178.66 (10)
C11—N3—N4—C9179.57 (9)N4—N3—C7—C80.38 (11)
C6—C1—C2—C30.58 (18)N1—N2—C8—C9173.72 (10)
C1—C2—C3—F1177.63 (10)N1—N2—C8—C72.03 (16)
C1—C2—C3—C41.39 (19)O1—C7—C8—N27.81 (18)
F1—C3—C4—C5176.26 (10)N3—C7—C8—N2172.05 (10)
C2—C3—C4—C52.77 (17)O1—C7—C8—C9179.15 (10)
C3—C4—C5—F2176.48 (10)N3—C7—C8—C90.98 (11)
C3—C4—C5—C62.30 (16)N3—N4—C9—C81.11 (12)
C2—C1—C6—C51.00 (17)N3—N4—C9—C10179.47 (9)
C2—C1—C6—N1177.62 (10)N2—C8—C9—N4171.79 (10)
F2—C5—C6—C1178.30 (10)C7—C8—C9—N41.35 (12)
C4—C5—C6—C10.50 (16)N2—C8—C9—C107.61 (17)
F2—C5—C6—N10.39 (14)C7—C8—C9—C10179.24 (10)
C4—C5—C6—N1179.20 (10)C7—N3—C11—N50.44 (16)
N2—N1—C6—C16.89 (16)N4—N3—C11—N5178.53 (9)
N2—N1—C6—C5174.49 (9)C7—N3—C11—S1179.35 (8)
C11—N3—C7—O11.21 (18)N4—N3—C11—S11.67 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.863 (17)2.080 (17)2.7605 (13)135.2 (15)
N5—H1N5···S1i0.842 (17)2.607 (17)3.4279 (11)165.5 (15)
N5—H2N5···O10.880 (17)2.048 (17)2.7208 (13)132.5 (14)
C10—H10A···F1ii0.982.473.3016 (14)143
C10—H10C···F1iii0.982.533.2775 (14)133
C10—H10C···F2iv0.982.553.2145 (14)125
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+2, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H9F2N5OS
Mr297.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9003 (1), 8.2400 (1), 10.1378 (1)
α, β, γ (°)103.409 (1), 99.864 (1), 99.372 (1)
V3)618.18 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.41 × 0.23 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.890, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
15661, 4211, 3546
Rint0.024
(sin θ/λ)max1)0.743
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.06
No. of reflections4211
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.863 (17)2.080 (17)2.7605 (13)135.2 (15)
N5—H1N5···S1i0.842 (17)2.607 (17)3.4279 (11)165.5 (15)
N5—H2N5···O10.880 (17)2.048 (17)2.7208 (13)132.5 (14)
C10—H10A···F1ii0.98002.47003.3016 (14)143.00
C10—H10C···F1iii0.98002.53003.2775 (14)133.00
C10—H10C···F2iv0.98002.55003.2145 (14)125.00
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+2, z; (iv) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF, IAR and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/ 811151).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBradbury, B. J. & Pucci, M. J. (2008). Curr. Opin. Pharmacol. 8, 574–581.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Shetty, S. & Kalluraya, B. K. (2011). Acta Cryst. E67, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGirisha, K.S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds