metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,2′-Bis(pyridin-2-ylmeth­­oxy)bi­phenyl-κ4N,O,O′,N′]bis­­(nitrato-κ2O,O′)cadmium

aSchool of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
*Correspondence e-mail: sxsdzrf@yahoo.com.cn

(Received 28 August 2011; accepted 27 September 2011; online 5 October 2011)

In the title compound, [Cd(NO3)2(C24H20N2O2)], the CdII ion is eight-coordinated by one ligand and two nitrate ions. There are C—H⋯O hydrogen bonds and C—H⋯π inter­actions and ππ inter­actions [centroid–centroid distance = 3.319 (1) Å] in the crystal structure.

Related literature

For background to weak inter­molecular inter­actions, see: Desiraju & Steiner (2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]); Reinhoudt & Crego-Calama (2002[Reinhoudt, D. N. & Crego-Calama, M. (2002). Science, 295, 2403-2407.]); Frederik & Mikkel (2001[Frederik, C. K. & Mikkel, J. (2001). J. Org. Chem. 66, 6169-6173.]). For the synthesis of the 2,2′-bis­(pyridin-2-ylmeth­oxy)biphenol ligand, see: Oh et al. (2005[Oh, M., Stern, C. L. & Mirkin, C. A. (2005). Inorg. Chem. 44, 2647-2653.]). For C—H⋯O and C—H⋯π hydrogen bonds, see: Guo et al. (2005[Guo, W.-S., Guo, F., Xu, H.-N., Yuan, L., Wang, Z.-H. & Tong, J. (2005). J. Mol. Struct. 733, 143-149.]). For aromatic ring arrangements, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO3)2(C24H20N2O2)]

  • Mr = 604.84

  • Triclinic, [P \overline 1]

  • a = 9.2216 (14) Å

  • b = 10.1064 (16) Å

  • c = 14.335 (2) Å

  • α = 73.723 (2)°

  • β = 73.501 (2)°

  • γ = 75.199 (2)°

  • V = 1207.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.793, Tmax = 1.000

  • 6126 measured reflections

  • 4197 independent reflections

  • 3714 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.05

  • 4197 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the N2/C20–C24 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯C4 0.97 2.67 3.278 (4) 121
C11—H11⋯O7i 0.93 2.46 3.119 (3) 128
C15—H15⋯O8ii 0.93 2.54 3.286 (4) 137
C19—H19B⋯O4iii 0.97 2.49 3.411 (4) 159
C1—H1⋯O5iv 0.93 2.58 3.317 (4) 136
C23—H23⋯O3v 0.93 2.64 3.330 (4) 131
C17—H17⋯Cg2iii 0.93 2.90 3.736 (3) 137
C22—H22⋯Cg3vi 0.93 2.90 3.693 (3) 144
Symmetry codes: (i) x-1, y, z; (ii) x-1, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y, -z+1; (vi) -x+1, -y, -z+1.

Data collection: SMART-NT (Bruker, 1998[Bruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1998[Bruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, there has been increasing interest in the study of weak intermolecular interactions, because of their important roles played in the various fields of chemistry and biochemistry, such as crystal engineering, supramolecular chemistry, molecular recognition and self-assembly of molecules (Desiraju et al., 2001). Utilization of supramolecular architecture via non-covalent interactions is a vigorous field involving in the creation of new functional materials and is a powerful tool for particular structure formations (Reinhoudt et al., 2002). Within the field of supramolecular chemistry, the non-covalent linkage of p-electron donating molecules to a p-deficient acceptor moiety through hydrogen bond and/or cooperative aromatic interactions (Frederik et al., 2001) has attracted much attention in recent years. Recently, we have synthesized a coordination compound, namely [Cd(L1)(NO3)2], (L1 = 2,2'-bis(pyridin-2-ylmethyl)biphenol), which is constructed through non-covalent interactions.

The title compound crystallizes in triclinic space group P-1. The asymmetrical unit of the unit cell contains one Cd(II) ion, one ligand L1 and two nitrate ions, as shown in Fig. 1. Each Cd(II) ion is eight-coordinated with four oxygen atoms from the two coordinated nitrate ions, two nitrogen and two oxygen atoms from the ligand L1. The compound is then constructed into three-dimensional supramolecular structure through hydrogen bonds and π-π interactions. There are two kinds of hydrogen bonds (as shown in Fig. 2), C—H···O (H···O 2.460 (5)–2.895 (0) Å, O···O 3.118 (9)–3.412 (0) Å) and C—H···π (H···C 2.895 (0) Å, C···C 3.843 (1) Å) respectively, which is in good agreement with values reported in literature (Guo et al., 2005). Both face-to-face and edge-to-face aromatic rings arrangements exist in compound, as shown in Fig. 3. For the face-to-face arrangement, the dihedral angle is 0.186° and the centroid-centroid distance is 3.319 (1) Å, within the effective distance 3.3–3.8 Å (Janiak, 2000). As for the edge-to-face arrangement, the dihedral angle is 107.41° and H···cg' 2.900 (1) Å, C···cg' 3.693 (4) Å, C—H···cg' 144.04°, where C—H is from pyridine ring, and cg' is the centroid of the phenol ring.

Related literature top

For background to weak intermolecular interactions, see: Desiraju & Steiner (2001); Reinhoudt & Crego-Calama (2002); Frederik & Mikkel (2001). For the synthesis of the 2,2'-bis(pyridin-2-ylmethyl)biphenol ligand, see: Oh et al. (2005). For C—H···O and C—H···π hydrogen bonds, see: Guo et al. (2005). For aromatic ring arrangements, see: Janiak (2000).

Experimental top

The title compound was prepared by adding 5 ml methanol solution of cadmium nitrate (0.3 mmol) to 10 ml methanol solution of L1 (Oh et al., 2005). The mixture was stirred for half an hour and filtered. The filtrate was slowly evaporated at room temperature to yield colorless block crystals suitable for X-ray analysis. Analysis calculated for C24H20CdN4O8: C 47.62, H 3.31, N 9.26%; found: C 48.06, H 3.09, N 9.49%.

Refinement top

Hydrogen atoms were included in calculated positions and refined with fixed thermal parameters riding on their parent atoms with C—H distances in the range of 0.93–0.97 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The thermal ellipsoid (30%) plot of coordination compound 1. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The hydrogen bonds of the title compound. Part of the hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. The π-π interactions of the title compound. Part of the hydrogen atoms are omitted for clarity.
[2,2'-Bis(pyridin-2-ylmethoxy)biphenyl- κ4N,O,O',N']bis(nitrato- κ2O,O')cadmium top
Crystal data top
[Cd(NO3)2(C24H20N2O2)]Z = 2
Mr = 604.84F(000) = 608
Triclinic, P1Dx = 1.664 Mg m3
a = 9.2216 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1064 (16) ÅCell parameters from 4044 reflections
c = 14.335 (2) Åθ = 2.4–26.3°
α = 73.723 (2)°µ = 0.96 mm1
β = 73.501 (2)°T = 293 K
γ = 75.199 (2)°Block, colourless
V = 1207.0 (3) Å30.30 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4197 independent reflections
Radiation source: fine-focus sealed tube3714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.793, Tmax = 1.000k = 1012
6126 measured reflectionsl = 1713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.1926P]
where P = (Fo2 + 2Fc2)/3
4197 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cd(NO3)2(C24H20N2O2)]γ = 75.199 (2)°
Mr = 604.84V = 1207.0 (3) Å3
Triclinic, P1Z = 2
a = 9.2216 (14) ÅMo Kα radiation
b = 10.1064 (16) ŵ = 0.96 mm1
c = 14.335 (2) ÅT = 293 K
α = 73.723 (2)°0.30 × 0.24 × 0.20 mm
β = 73.501 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4197 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3714 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 1.000Rint = 0.017
6126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
4197 reflectionsΔρmin = 0.45 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.81711 (2)0.308586 (19)0.326615 (13)0.03353 (8)
O10.74199 (19)0.35604 (18)0.16450 (12)0.0339 (4)
O20.5313 (2)0.4063 (2)0.34234 (12)0.0410 (4)
O31.0172 (3)0.2506 (3)0.41079 (19)0.0707 (7)
O40.8298 (3)0.3957 (2)0.47524 (16)0.0622 (6)
O51.0254 (4)0.3066 (4)0.5432 (2)0.1063 (11)
O60.8992 (2)0.0848 (2)0.27615 (15)0.0565 (5)
O71.0435 (2)0.2359 (2)0.19232 (17)0.0553 (5)
O81.0681 (3)0.0488 (2)0.14034 (17)0.0594 (6)
N10.8489 (2)0.5283 (2)0.23165 (15)0.0350 (5)
N20.6624 (2)0.1800 (2)0.45773 (15)0.0380 (5)
N30.9588 (4)0.3176 (3)0.4785 (2)0.0583 (7)
N41.0062 (3)0.1209 (2)0.20242 (18)0.0426 (6)
C10.8922 (3)0.6165 (3)0.2697 (2)0.0460 (7)
H10.90340.58750.33530.055*
C20.9203 (4)0.7463 (3)0.2163 (2)0.0530 (8)
H20.94840.80470.24530.064*
C30.9061 (4)0.7883 (3)0.1194 (2)0.0532 (8)
H30.92670.87520.08100.064*
C40.8610 (3)0.7004 (3)0.0791 (2)0.0441 (7)
H40.84950.72800.01360.053*
C50.8331 (3)0.5713 (2)0.13708 (17)0.0303 (5)
C60.7855 (3)0.4773 (3)0.09140 (18)0.0374 (6)
H6A0.69940.52910.06170.045*
H6B0.87030.44770.03880.045*
C70.6315 (3)0.2988 (3)0.14698 (17)0.0295 (5)
C80.6794 (3)0.1738 (3)0.11518 (19)0.0371 (6)
H80.78300.13120.10350.044*
C90.5704 (3)0.1131 (3)0.1011 (2)0.0438 (7)
H90.60050.02920.07980.053*
C100.4169 (3)0.1775 (3)0.1188 (2)0.0458 (7)
H100.34390.13620.11010.055*
C110.3717 (3)0.3021 (3)0.1490 (2)0.0417 (6)
H110.26820.34510.15930.050*
C120.4783 (3)0.3659 (3)0.16473 (18)0.0327 (5)
C130.4303 (3)0.5031 (3)0.19484 (18)0.0342 (6)
C140.3582 (3)0.6212 (3)0.1351 (2)0.0462 (7)
H140.33760.61240.07750.055*
C150.3169 (4)0.7502 (3)0.1589 (2)0.0572 (8)
H150.26740.82690.11840.069*
C160.3488 (4)0.7660 (3)0.2427 (2)0.0600 (9)
H160.32250.85370.25820.072*
C170.4200 (4)0.6515 (3)0.3039 (2)0.0520 (8)
H170.44080.66160.36100.062*
C180.4598 (3)0.5223 (3)0.27970 (18)0.0364 (6)
C190.4273 (3)0.3428 (3)0.4250 (2)0.0556 (8)
H19A0.35310.31460.40190.067*
H19B0.37150.41020.46560.067*
C200.5102 (3)0.2170 (3)0.48684 (19)0.0396 (6)
C210.4245 (4)0.1425 (3)0.5720 (2)0.0484 (7)
H210.31810.17030.59040.058*
C220.5004 (4)0.0263 (3)0.6289 (2)0.0558 (8)
H220.44570.02550.68640.067*
C230.6574 (4)0.0124 (3)0.5998 (2)0.0559 (8)
H230.71060.09010.63750.067*
C240.7342 (4)0.0652 (3)0.5147 (2)0.0483 (7)
H240.84050.03810.49500.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03440 (12)0.03312 (12)0.03341 (12)0.00985 (8)0.00953 (8)0.00311 (8)
O10.0330 (9)0.0346 (10)0.0375 (10)0.0129 (8)0.0124 (7)0.0031 (8)
O20.0371 (10)0.0485 (11)0.0298 (9)0.0054 (8)0.0068 (8)0.0004 (8)
O30.0536 (14)0.0862 (19)0.0803 (17)0.0044 (13)0.0283 (12)0.0340 (15)
O40.0686 (16)0.0581 (14)0.0603 (14)0.0142 (12)0.0097 (12)0.0170 (11)
O50.140 (3)0.130 (3)0.084 (2)0.043 (2)0.077 (2)0.0106 (18)
O60.0565 (13)0.0527 (13)0.0484 (12)0.0115 (10)0.0015 (10)0.0021 (10)
O70.0378 (11)0.0477 (13)0.0888 (16)0.0089 (9)0.0126 (10)0.0299 (11)
O80.0602 (14)0.0467 (13)0.0676 (14)0.0026 (10)0.0014 (11)0.0276 (11)
N10.0371 (12)0.0332 (12)0.0362 (12)0.0126 (9)0.0071 (9)0.0059 (9)
N20.0389 (13)0.0362 (12)0.0375 (12)0.0099 (10)0.0086 (10)0.0036 (10)
N30.070 (2)0.0621 (18)0.0519 (16)0.0240 (15)0.0273 (14)0.0038 (14)
N40.0340 (13)0.0391 (14)0.0552 (15)0.0001 (10)0.0154 (11)0.0122 (12)
C10.0556 (18)0.0448 (17)0.0446 (16)0.0167 (14)0.0133 (13)0.0126 (13)
C20.063 (2)0.0402 (17)0.064 (2)0.0217 (15)0.0096 (16)0.0191 (15)
C30.067 (2)0.0307 (16)0.060 (2)0.0194 (14)0.0097 (16)0.0023 (14)
C40.0483 (17)0.0377 (16)0.0425 (16)0.0106 (13)0.0087 (13)0.0026 (12)
C50.0261 (12)0.0291 (13)0.0325 (13)0.0054 (10)0.0027 (10)0.0058 (10)
C60.0378 (15)0.0442 (16)0.0306 (13)0.0171 (12)0.0050 (11)0.0038 (11)
C70.0332 (13)0.0299 (13)0.0278 (13)0.0101 (10)0.0100 (10)0.0036 (10)
C80.0358 (14)0.0370 (15)0.0383 (15)0.0048 (12)0.0111 (11)0.0077 (12)
C90.0568 (19)0.0344 (15)0.0475 (17)0.0107 (13)0.0202 (14)0.0103 (12)
C100.0505 (18)0.0474 (17)0.0498 (17)0.0223 (14)0.0206 (14)0.0064 (14)
C110.0369 (15)0.0463 (17)0.0456 (16)0.0109 (12)0.0163 (12)0.0064 (13)
C120.0342 (14)0.0339 (14)0.0310 (13)0.0074 (11)0.0117 (10)0.0039 (10)
C130.0300 (13)0.0358 (14)0.0357 (14)0.0041 (11)0.0077 (11)0.0083 (11)
C140.0464 (17)0.0492 (18)0.0416 (16)0.0049 (14)0.0190 (13)0.0116 (13)
C150.067 (2)0.0442 (18)0.0501 (19)0.0137 (15)0.0201 (16)0.0095 (14)
C160.080 (2)0.0361 (17)0.058 (2)0.0022 (16)0.0112 (17)0.0180 (15)
C170.068 (2)0.0483 (18)0.0407 (16)0.0039 (15)0.0151 (14)0.0162 (14)
C180.0333 (14)0.0407 (15)0.0323 (14)0.0045 (11)0.0071 (11)0.0063 (11)
C190.0441 (17)0.0459 (18)0.0545 (19)0.0027 (14)0.0040 (14)0.0030 (14)
C200.0494 (17)0.0372 (15)0.0316 (14)0.0114 (13)0.0048 (12)0.0085 (11)
C210.0533 (18)0.0525 (18)0.0381 (16)0.0193 (15)0.0021 (13)0.0126 (14)
C220.083 (2)0.0518 (19)0.0320 (16)0.0274 (17)0.0073 (15)0.0001 (13)
C230.080 (2)0.0466 (18)0.0416 (17)0.0201 (17)0.0256 (16)0.0081 (14)
C240.0497 (17)0.0452 (17)0.0478 (17)0.0114 (14)0.0185 (14)0.0025 (14)
Geometric parameters (Å, º) top
Cd1—N12.298 (2)C7—C81.386 (3)
Cd1—N22.305 (2)C7—C121.387 (3)
Cd1—O32.349 (2)C8—C91.388 (4)
Cd1—O62.438 (2)C8—H80.9300
Cd1—O12.4960 (16)C9—C101.381 (4)
Cd1—O72.516 (2)C9—H90.9300
Cd1—O22.5355 (18)C10—C111.372 (4)
Cd1—O42.564 (2)C10—H100.9300
O1—C71.402 (3)C11—C121.402 (4)
O1—C61.433 (3)C11—H110.9300
O2—C181.403 (3)C12—C131.490 (4)
O2—C191.406 (3)C13—C181.392 (4)
O3—N31.256 (3)C13—C141.395 (4)
O4—N31.254 (3)C14—C151.372 (4)
O5—N31.216 (3)C14—H140.9300
O6—N41.265 (3)C15—C161.373 (4)
O7—N41.253 (3)C15—H150.9300
O8—N41.229 (3)C16—C171.382 (4)
N1—C51.341 (3)C16—H160.9300
N1—C11.353 (3)C17—C181.377 (4)
N2—C201.331 (3)C17—H170.9300
N2—C241.354 (3)C19—C201.498 (4)
C1—C21.369 (4)C19—H19A0.9700
C1—H10.9300C19—H19B0.9700
C2—C31.368 (4)C20—C211.387 (4)
C2—H20.9300C21—C221.379 (4)
C3—C41.383 (4)C21—H210.9300
C3—H30.9300C22—C231.372 (5)
C4—C51.379 (4)C22—H220.9300
C4—H40.9300C23—C241.364 (4)
C5—C61.500 (3)C23—H230.9300
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700
N1—Cd1—N2146.09 (8)C4—C5—C6118.2 (2)
N1—Cd1—O3101.09 (9)O1—C6—C5111.3 (2)
N2—Cd1—O392.68 (9)O1—C6—H6A109.4
N1—Cd1—O6128.60 (7)C5—C6—H6A109.4
N2—Cd1—O681.38 (7)O1—C6—H6B109.4
O3—Cd1—O690.97 (8)C5—C6—H6B109.4
N1—Cd1—O168.38 (6)H6A—C6—H6B108.0
N2—Cd1—O1113.32 (7)C8—C7—C12122.3 (2)
O3—Cd1—O1147.49 (7)C8—C7—O1118.4 (2)
O6—Cd1—O174.91 (6)C12—C7—O1119.4 (2)
N1—Cd1—O781.60 (7)C7—C8—C9119.0 (2)
N2—Cd1—O7131.70 (7)C7—C8—H8120.5
O3—Cd1—O779.53 (8)C9—C8—H8120.5
O6—Cd1—O751.57 (7)C10—C9—C8119.9 (3)
O1—Cd1—O768.70 (6)C10—C9—H9120.1
N1—Cd1—O285.15 (7)C8—C9—H9120.1
N2—Cd1—O266.24 (7)C11—C10—C9120.4 (3)
O3—Cd1—O2143.64 (7)C11—C10—H10119.8
O6—Cd1—O2113.14 (7)C9—C10—H10119.8
O1—Cd1—O268.10 (5)C10—C11—C12121.3 (3)
O7—Cd1—O2136.72 (6)C10—C11—H11119.3
N1—Cd1—O486.65 (7)C12—C11—H11119.3
N2—Cd1—O478.09 (7)C7—C12—C11117.1 (2)
O3—Cd1—O451.22 (8)C7—C12—C13121.3 (2)
O6—Cd1—O4135.23 (7)C11—C12—C13121.5 (2)
O1—Cd1—O4149.86 (7)C18—C13—C14116.9 (2)
O7—Cd1—O4125.77 (7)C18—C13—C12122.8 (2)
O2—Cd1—O494.10 (7)C14—C13—C12120.2 (2)
C7—O1—C6115.83 (18)C15—C14—C13121.8 (3)
C7—O1—Cd1125.97 (13)C15—C14—H14119.1
C6—O1—Cd1116.20 (14)C13—C14—H14119.1
C18—O2—C19113.6 (2)C14—C15—C16120.0 (3)
C18—O2—Cd1128.07 (15)C14—C15—H15120.0
C19—O2—Cd1118.32 (16)C16—C15—H15120.0
N3—O3—Cd1101.28 (18)C15—C16—C17120.0 (3)
N3—O4—Cd190.90 (17)C15—C16—H16120.0
N4—O6—Cd196.57 (16)C17—C16—H16120.0
N4—O7—Cd193.15 (16)C18—C17—C16119.6 (3)
C5—N1—C1117.9 (2)C18—C17—H17120.2
C5—N1—Cd1122.44 (16)C16—C17—H17120.2
C1—N1—Cd1119.62 (18)C17—C18—C13121.8 (2)
C20—N2—C24117.8 (2)C17—C18—O2119.3 (2)
C20—N2—Cd1124.93 (18)C13—C18—O2118.9 (2)
C24—N2—Cd1116.98 (18)O2—C19—C20110.9 (2)
O5—N3—O4122.5 (3)O2—C19—H19A109.5
O5—N3—O3121.1 (3)C20—C19—H19A109.5
O4—N3—O3116.4 (3)O2—C19—H19B109.5
O8—N4—O7120.7 (2)C20—C19—H19B109.5
O8—N4—O6121.5 (2)H19A—C19—H19B108.0
O7—N4—O6117.8 (2)N2—C20—C21122.5 (3)
N1—C1—C2123.1 (3)N2—C20—C19119.1 (2)
N1—C1—H1118.5C21—C20—C19118.4 (3)
C2—C1—H1118.5C22—C21—C20118.6 (3)
C3—C2—C1118.5 (3)C22—C21—H21120.7
C3—C2—H2120.7C20—C21—H21120.7
C1—C2—H2120.7C23—C22—C21119.4 (3)
C2—C3—C4119.4 (3)C23—C22—H22120.3
C2—C3—H3120.3C21—C22—H22120.3
C4—C3—H3120.3C24—C23—C22118.9 (3)
C5—C4—C3119.2 (3)C24—C23—H23120.6
C5—C4—H4120.4C22—C23—H23120.6
C3—C4—H4120.4N2—C24—C23122.9 (3)
N1—C5—C4121.9 (2)N2—C24—H24118.5
N1—C5—C6119.9 (2)C23—C24—H24118.5
N1—Cd1—O1—C7151.15 (19)O3—Cd1—N2—C2430.7 (2)
N2—Cd1—O1—C77.90 (19)O6—Cd1—N2—C2459.9 (2)
O3—Cd1—O1—C7132.55 (19)O1—Cd1—N2—C24129.28 (19)
O6—Cd1—O1—C765.53 (18)O7—Cd1—N2—C2447.7 (2)
O7—Cd1—O1—C7119.66 (18)O2—Cd1—N2—C24180.0 (2)
O2—Cd1—O1—C757.64 (17)O4—Cd1—N2—C2480.1 (2)
O4—Cd1—O1—C7115.03 (19)Cd1—O4—N3—O5175.6 (3)
N1—Cd1—O1—C612.00 (16)Cd1—O4—N3—O34.6 (3)
N2—Cd1—O1—C6155.25 (16)Cd1—O3—N3—O5175.1 (3)
O3—Cd1—O1—C664.3 (2)Cd1—O3—N3—O45.1 (3)
O6—Cd1—O1—C6131.32 (17)Cd1—O7—N4—O8167.7 (2)
O7—Cd1—O1—C677.19 (16)Cd1—O7—N4—O69.6 (2)
O2—Cd1—O1—C6105.51 (17)Cd1—O6—N4—O8167.3 (2)
O4—Cd1—O1—C648.1 (2)Cd1—O6—N4—O79.9 (2)
N1—Cd1—O2—C1821.51 (19)C5—N1—C1—C20.0 (4)
N2—Cd1—O2—C18177.1 (2)Cd1—N1—C1—C2176.9 (2)
O3—Cd1—O2—C18123.6 (2)N1—C1—C2—C31.0 (5)
O6—Cd1—O2—C18108.6 (2)C1—C2—C3—C41.4 (5)
O1—Cd1—O2—C1847.12 (19)C2—C3—C4—C50.9 (5)
O7—Cd1—O2—C1850.8 (2)C1—N1—C5—C40.6 (4)
O4—Cd1—O2—C18107.8 (2)Cd1—N1—C5—C4176.28 (19)
N1—Cd1—O2—C19155.9 (2)C1—N1—C5—C6179.9 (2)
N2—Cd1—O2—C195.5 (2)Cd1—N1—C5—C63.1 (3)
O3—Cd1—O2—C1953.8 (3)C3—C4—C5—N10.1 (4)
O6—Cd1—O2—C1974.0 (2)C3—C4—C5—C6179.5 (3)
O1—Cd1—O2—C19135.5 (2)C7—O1—C6—C5150.6 (2)
O7—Cd1—O2—C19131.8 (2)Cd1—O1—C6—C514.3 (3)
O4—Cd1—O2—C1969.6 (2)N1—C5—C6—O18.1 (3)
N1—Cd1—O3—N379.4 (2)C4—C5—C6—O1172.5 (2)
N2—Cd1—O3—N369.5 (2)C6—O1—C7—C8106.3 (2)
O6—Cd1—O3—N3150.9 (2)Cd1—O1—C7—C890.5 (2)
O1—Cd1—O3—N3146.34 (17)C6—O1—C7—C1275.6 (3)
O7—Cd1—O3—N3158.5 (2)Cd1—O1—C7—C1287.6 (2)
O2—Cd1—O3—N317.6 (3)C12—C7—C8—C90.4 (4)
O4—Cd1—O3—N32.88 (17)O1—C7—C8—C9177.6 (2)
N1—Cd1—O4—N3109.93 (18)C7—C8—C9—C100.0 (4)
N2—Cd1—O4—N3100.52 (18)C8—C9—C10—C110.8 (4)
O3—Cd1—O4—N32.83 (17)C9—C10—C11—C121.3 (4)
O6—Cd1—O4—N336.0 (2)C8—C7—C12—C110.1 (4)
O1—Cd1—O4—N3143.23 (16)O1—C7—C12—C11178.1 (2)
O7—Cd1—O4—N332.8 (2)C8—C7—C12—C13177.5 (2)
O2—Cd1—O4—N3165.18 (17)O1—C7—C12—C134.6 (3)
N1—Cd1—O6—N423.7 (2)C10—C11—C12—C70.9 (4)
N2—Cd1—O6—N4173.92 (17)C10—C11—C12—C13178.3 (2)
O3—Cd1—O6—N481.35 (16)C7—C12—C13—C1858.0 (4)
O1—Cd1—O6—N468.99 (15)C11—C12—C13—C18124.7 (3)
O7—Cd1—O6—N45.57 (14)C7—C12—C13—C14119.2 (3)
O2—Cd1—O6—N4126.62 (15)C11—C12—C13—C1458.0 (4)
O4—Cd1—O6—N4110.62 (16)C18—C13—C14—C150.5 (4)
N1—Cd1—O7—N4151.69 (16)C12—C13—C14—C15177.9 (3)
N2—Cd1—O7—N421.10 (19)C13—C14—C15—C161.1 (5)
O3—Cd1—O7—N4105.31 (17)C14—C15—C16—C171.1 (5)
O6—Cd1—O7—N45.59 (14)C15—C16—C17—C180.6 (5)
O1—Cd1—O7—N481.70 (15)C16—C17—C18—C130.0 (5)
O2—Cd1—O7—N478.05 (18)C16—C17—C18—O2179.7 (3)
O4—Cd1—O7—N4128.63 (15)C14—C13—C18—C170.0 (4)
N2—Cd1—N1—C5107.9 (2)C12—C13—C18—C17177.3 (3)
O3—Cd1—N1—C5139.97 (19)C14—C13—C18—O2179.6 (2)
O6—Cd1—N1—C539.7 (2)C12—C13—C18—O23.0 (4)
O1—Cd1—N1—C57.88 (17)C19—O2—C18—C1782.6 (3)
O7—Cd1—N1—C562.46 (19)Cd1—O2—C18—C1794.9 (3)
O2—Cd1—N1—C576.23 (19)C19—O2—C18—C1397.0 (3)
O4—Cd1—N1—C5170.63 (19)Cd1—O2—C18—C1385.4 (3)
N2—Cd1—N1—C175.3 (2)C18—O2—C19—C20178.1 (2)
O3—Cd1—N1—C136.8 (2)Cd1—O2—C19—C204.2 (3)
O6—Cd1—N1—C1137.1 (2)C24—N2—C20—C210.3 (4)
O1—Cd1—N1—C1175.3 (2)Cd1—N2—C20—C21173.7 (2)
O7—Cd1—N1—C1114.3 (2)C24—N2—C20—C19179.5 (3)
O2—Cd1—N1—C1107.0 (2)Cd1—N2—C20—C197.0 (4)
O4—Cd1—N1—C112.6 (2)O2—C19—C20—N21.2 (4)
N1—Cd1—N2—C2028.3 (3)O2—C19—C20—C21179.5 (3)
O3—Cd1—N2—C20142.8 (2)N2—C20—C21—C220.5 (4)
O6—Cd1—N2—C20126.6 (2)C19—C20—C21—C22179.7 (3)
O1—Cd1—N2—C2057.2 (2)C20—C21—C22—C230.1 (5)
O7—Cd1—N2—C20138.85 (19)C21—C22—C23—C240.4 (5)
O2—Cd1—N2—C206.54 (19)C20—N2—C24—C230.3 (4)
O4—Cd1—N2—C2093.4 (2)Cd1—N2—C24—C23173.7 (2)
N1—Cd1—N2—C24145.19 (19)C22—C23—C24—N20.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N2/C20–C24 and C7–C12 rings ,respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6B···C40.972.673.278 (4)121
C11—H11···O7i0.932.463.119 (3)128
C15—H15···O8ii0.932.543.286 (4)137
C19—H19B···O4iii0.972.493.411 (4)159
C1—H1···O5iv0.932.583.317 (4)136
C23—H23···O3v0.932.643.330 (4)131
C17—H17···Cg2iii0.932.903.736 (3)137
C22—H22···Cg3vi0.932.903.693 (3)144
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+2, y, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(NO3)2(C24H20N2O2)]
Mr604.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2216 (14), 10.1064 (16), 14.335 (2)
α, β, γ (°)73.723 (2), 73.501 (2), 75.199 (2)
V3)1207.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.793, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6126, 4197, 3714
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.05
No. of reflections4197
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.45

Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N2/C20–C24 and C7–C12 rings ,respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6B···C40.972.673.278 (4)120.8
C11—H11···O7i0.932.463.119 (3)127.8
C15—H15···O8ii0.932.543.286 (4)137.1
C19—H19B···O4iii0.972.493.411 (4)159.2
C1—H1···O5iv0.932.583.317 (4)136.3
C23—H23···O3v0.932.643.330 (4)131.3
C17—H17···Cg2iii0.932.903.736 (3)137
C22—H22···Cg3vi0.932.903.693 (3)144
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+2, y, z+1; (vi) x+1, y, z+1.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Shanxi Normal University (ZR1012) and the Research Fund for the Doctoral Program of Shanxi Normal University (No. 833114).

References

First citationBruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFrederik, C. K. & Mikkel, J. (2001). J. Org. Chem. 66, 6169–6173.  PubMed Google Scholar
First citationGuo, W.-S., Guo, F., Xu, H.-N., Yuan, L., Wang, Z.-H. & Tong, J. (2005). J. Mol. Struct. 733, 143–149.  Web of Science CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationOh, M., Stern, C. L. & Mirkin, C. A. (2005). Inorg. Chem. 44, 2647–2653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReinhoudt, D. N. & Crego-Calama, M. (2002). Science, 295, 2403–2407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds