organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Carb­­oxy-2-(2-cyclo­propyl­amino-4-methyl­pyridinium-3-yl­amino)­pyridinium dinitrate dihydrate

aFaculty of Science ZheJiang A & F University, Lin'An 311300, People's Republic of China, and bTianmu College of ZheJiang A & F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: JINSWw@yahoo.cn

(Received 28 August 2011; accepted 30 September 2011; online 8 October 2011)

The two benzene rings in the cation of the title compound, C15H18N4O22+·2NO3·2H2O, are almost perpendicular [dihedral angle = 91.6 (2)°]. In the crystal, the components are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to hydrogen-bonding inter­actions, see: Lam & Mak (2000[Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Liu et al. (2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Zhong, F., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 173-182.]); Biswas et al. (2009[Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238-2246.]); Jin et al. (2010[Jin, S. W., Zhang, W. B., Liu, L., Gao, H. F., Wang, D. Q., Chen, R. P. & Xu, X. L. (2010). J. Mol. Struct. 975, 128-136.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18N4O22+·2NO3·2H2O

  • Mr = 446.39

  • Orthorhombic, P b c a

  • a = 7.4463 (6) Å

  • b = 15.0032 (14) Å

  • c = 35.975 (2) Å

  • V = 4019.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.44 × 0.36 × 0.34 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.958

  • 18931 measured reflections

  • 3540 independent reflections

  • 1964 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.295

  • S = 1.04

  • 3540 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10D⋯O8i 0.85 2.10 2.942 (8) 171
O10—H10C⋯O4ii 0.85 2.19 3.037 (7) 172
O9—H9D⋯O5iii 0.85 2.55 3.089 (7) 123
O9—H9D⋯O4iii 0.85 2.07 2.916 (6) 174
O9—H9C⋯O1iv 0.85 1.96 2.809 (5) 173
O2—H2A⋯O9v 0.82 1.73 2.535 (5) 168
N4—H4⋯O7vi 0.86 1.94 2.787 (6) 166
N3—H3⋯O6 0.86 2.01 2.746 (6) 143
N2—H2⋯O3 0.86 1.98 2.810 (5) 163
N1—H1⋯O10 0.86 2.22 2.900 (6) 136
N1—H1⋯O1 0.86 2.05 2.697 (4) 131
C4—H4A⋯O5vii 0.93 2.34 3.162 (7) 147
C6—H6⋯O3iv 0.93 2.26 3.161 (6) 162
C11—H11⋯O8vi 0.93 2.57 3.252 (8) 131
C15—H15A⋯O3ii 0.96 2.58 3.533 (7) 174
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1; (vi) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Intermolecular interactions are responsible for crystal packing and gaining an understanding of them allows us to comprehend collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). Hydrogen bonding is one of the most important noncovalent interactions that determines and controls the assembly of molecules and ions (Desiraju, 2002, Liu et al., 2008, Biswas et al., 2009).

Organic salts based on hydrogen bonding are also a research field receiving great attention in recent years. As an extension of our study concentrating on hydrogen bonded assembly of organic acid and organic base (Jin et al., 2010), herein we report the crystal structure of 2-(2-(cyclopropylamino)-4-methylpyridinium-3-ylamino) nicotinic acid dinitrate dihydrate.

The crystal of the title compound of the formula C15H22N6O10 was obtained by recrystallization of 2-(2-(cyclopropylamino)-4-methylpyridin-3-ylamino) nicotinic acid from aqueous solution of HNO3.

The asymmetric unit of the compound consists of one dication, two nitrate anions, and two free water molecules (Fig. 1), respectively.

The compound is an organic salt. At every cation there are bound two nitrate anions through the N—H···O hydrogen bond. And the two water molecules were connected with carbonyl and OH of the carboxyl group of the cation rspectively via the O—H···O hydrogen bond. Under these interactions the cation, the anions, and the water molecules form a pentacomponent adduct. Such kind of adducts were connected together by the N—H···O, O—H···O, O-pi, and CH2—O interactions to form a one-dimensional chain running along the a axis direction. Two such chains were joined together via the CH—O, and CH2—O interactions to form double chain structure (Fig. 2). The double chains were linked together via the water molecule that is bound with the carboxyl group to form two-dimensional sheet extending along the ac plane. The two-dimensional sheets further stacked along the b axis direction through the nitrate group to form three-dimensional layer network structure.

Related literature top

For general background to hydrogen-bonding interactions, see: Lam & Mak (2000); Desiraju (2002); Liu et al. (2008); Biswas et al. (2009); Jin et al. (2010).

Experimental top

A solution of 2-(2-(cyclopropylamino)-4-methylpyridin-3-ylamino) nicotinic acid (28.4 mg, 0.1 mmol) was dissolved in 5 ml of water and 1 ml of conc. HNO3 under continuous stirring. The solution was stirred for about 1 h at room temperature, then the solution was filtered into a test tube. The solution was left standing at room temperature for several days, colorless block crystals were isolated after slow evaporation of the solution in air at ambient temperature. The crystals were collected and dried in air to give the title compound.

Refinement top

Hydrogen atoms attached to the C atoms were placed in calculated positions with d(C—H) = 0.93–0.97 Å. Positions of the hydrogen atoms at the NH, OH, and COOH groups were located from the Fourier difference syntheses and refined independently. All Uiso values were restrained on Ueq values of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional doublechain formed through CH—O, and CH2—O interactions running along the a axis direction.
3-Carboxy-2-(2-cyclopropylamino-4-methylpyridinium-3-ylamino)pyridinium dinitrate dihydrate top
Crystal data top
C15H18N4O22+·2NO3·2H2ODx = 1.475 Mg m3
Mr = 446.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 887 reflections
a = 7.4463 (6) Åθ = 2.7–20.4°
b = 15.0032 (14) ŵ = 0.13 mm1
c = 35.975 (2) ÅT = 298 K
V = 4019.0 (6) Å3Block, colorless
Z = 80.44 × 0.36 × 0.34 mm
F(000) = 1872
Data collection top
Bruker SMART CCD
diffractometer
3540 independent reflections
Radiation source: fine-focus sealed tube1964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.947, Tmax = 0.958k = 1717
18931 measured reflectionsl = 3342
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.295H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1827P)2]
where P = (Fo2 + 2Fc2)/3
3540 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C15H18N4O22+·2NO3·2H2OV = 4019.0 (6) Å3
Mr = 446.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4463 (6) ŵ = 0.13 mm1
b = 15.0032 (14) ÅT = 298 K
c = 35.975 (2) Å0.44 × 0.36 × 0.34 mm
Data collection top
Bruker SMART CCD
diffractometer
3540 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1964 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.958Rint = 0.062
18931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.295H-atom parameters constrained
S = 1.04Δρmax = 1.01 e Å3
3540 reflectionsΔρmin = 0.56 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4596 (5)0.5310 (2)0.60657 (9)0.0449 (9)
H10.35410.52020.59790.054*
N20.3878 (5)0.6437 (2)0.66673 (11)0.0551 (11)
H20.36530.65920.64420.066*
N30.7403 (5)0.5937 (2)0.59845 (10)0.0467 (9)
H30.76530.57840.62090.056*
N40.4826 (5)0.5354 (3)0.70757 (10)0.0529 (10)
H40.45670.57090.72560.064*
N50.3305 (7)0.7673 (3)0.58219 (12)0.0604 (11)
N60.9273 (8)0.5859 (4)0.69535 (14)0.0758 (14)
O10.2512 (4)0.5323 (2)0.54524 (9)0.0611 (10)
O20.3557 (5)0.6001 (2)0.49541 (8)0.0666 (10)
H2A0.25830.58530.48680.100*
O30.2495 (5)0.7115 (3)0.59976 (12)0.0820 (13)
O40.4801 (6)0.7916 (3)0.59228 (13)0.0889 (13)
O50.2641 (9)0.7961 (4)0.55453 (15)0.143 (2)
O60.8651 (6)0.6237 (4)0.66917 (13)0.1026 (15)
O70.8916 (9)0.6246 (4)0.72714 (14)0.139 (2)
O81.0224 (9)0.5242 (4)0.69928 (17)0.128 (2)
O90.9337 (5)0.4322 (3)0.53919 (11)0.0792 (12)
H9C1.02580.46560.53970.095*
H9D0.95050.38950.55430.095*
O100.0912 (7)0.4787 (3)0.62102 (13)0.1114 (17)
H10C0.06730.42500.61520.134*
H10D0.06700.48620.64390.134*
C10.3673 (6)0.5733 (3)0.52926 (12)0.0470 (11)
C20.5772 (6)0.5728 (3)0.58415 (11)0.0397 (10)
C30.5404 (6)0.5972 (3)0.54734 (11)0.0417 (10)
C40.6701 (6)0.6429 (3)0.52733 (12)0.0502 (11)
H4A0.64640.65980.50300.060*
C50.8353 (7)0.6638 (3)0.54316 (13)0.0564 (12)
H50.92210.69470.52980.068*
C60.8655 (6)0.6383 (3)0.57803 (13)0.0529 (12)
H60.97580.65140.58890.063*
C70.4545 (6)0.5623 (3)0.67250 (12)0.0474 (11)
C80.4974 (6)0.5038 (3)0.64316 (11)0.0424 (10)
C90.5662 (6)0.4192 (3)0.65037 (13)0.0492 (12)
C100.5932 (7)0.3961 (3)0.68769 (15)0.0611 (14)
H100.64080.34050.69350.073*
C110.5509 (7)0.4537 (4)0.71544 (14)0.0612 (14)
H110.56880.43700.74010.073*
C120.3515 (8)0.7062 (3)0.69516 (15)0.0675 (15)
H120.24390.69420.71000.081*
C130.4961 (10)0.7496 (4)0.7146 (2)0.0862 (19)
H13A0.61800.73420.70760.103*
H13B0.47940.76250.74080.103*
C140.3883 (10)0.7997 (4)0.6879 (2)0.091 (2)
H14A0.30440.84340.69750.110*
H14B0.44310.81510.66430.110*
C150.6116 (8)0.3554 (4)0.62113 (16)0.0719 (16)
H15A0.51220.31580.61720.108*
H15B0.71520.32160.62850.108*
H15C0.63740.38690.59850.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.042 (2)0.058 (2)0.0342 (19)0.0082 (18)0.0056 (16)0.0035 (17)
N20.067 (3)0.053 (2)0.045 (2)0.005 (2)0.0016 (19)0.0010 (18)
N30.041 (2)0.053 (2)0.046 (2)0.0064 (17)0.0023 (17)0.0017 (17)
N40.059 (3)0.065 (3)0.035 (2)0.003 (2)0.0017 (18)0.0049 (19)
N50.066 (3)0.058 (2)0.058 (3)0.004 (2)0.005 (2)0.005 (2)
N60.077 (4)0.097 (4)0.054 (3)0.022 (3)0.015 (3)0.007 (3)
O10.051 (2)0.088 (2)0.0446 (18)0.0183 (18)0.0130 (16)0.0122 (17)
O20.065 (2)0.097 (3)0.0374 (19)0.0155 (19)0.0153 (16)0.0130 (17)
O30.072 (3)0.076 (2)0.098 (3)0.018 (2)0.026 (2)0.032 (2)
O40.077 (3)0.097 (3)0.092 (3)0.028 (2)0.005 (2)0.003 (2)
O50.155 (6)0.173 (5)0.102 (4)0.018 (4)0.050 (4)0.071 (4)
O60.100 (4)0.142 (4)0.066 (3)0.002 (3)0.023 (3)0.007 (3)
O70.174 (6)0.179 (5)0.064 (3)0.041 (5)0.020 (3)0.015 (3)
O80.143 (5)0.115 (4)0.126 (5)0.025 (4)0.030 (4)0.040 (4)
O90.076 (3)0.079 (2)0.083 (3)0.015 (2)0.037 (2)0.016 (2)
O100.128 (4)0.121 (4)0.085 (3)0.014 (3)0.004 (3)0.013 (3)
C10.050 (3)0.057 (3)0.034 (2)0.002 (2)0.005 (2)0.001 (2)
C20.037 (2)0.044 (2)0.037 (2)0.0040 (19)0.0001 (18)0.0010 (18)
C30.042 (2)0.046 (2)0.037 (2)0.0034 (19)0.0008 (19)0.0001 (19)
C40.053 (3)0.059 (3)0.039 (2)0.006 (2)0.001 (2)0.007 (2)
C50.049 (3)0.064 (3)0.056 (3)0.010 (2)0.006 (2)0.006 (2)
C60.040 (3)0.064 (3)0.055 (3)0.009 (2)0.005 (2)0.002 (2)
C70.051 (3)0.051 (3)0.040 (3)0.003 (2)0.003 (2)0.002 (2)
C80.040 (2)0.052 (3)0.035 (2)0.006 (2)0.0019 (19)0.0020 (19)
C90.052 (3)0.050 (3)0.046 (3)0.004 (2)0.001 (2)0.002 (2)
C100.064 (3)0.056 (3)0.062 (3)0.009 (2)0.008 (3)0.014 (3)
C110.072 (4)0.070 (3)0.041 (3)0.001 (3)0.005 (2)0.013 (3)
C120.069 (4)0.067 (3)0.066 (3)0.001 (3)0.003 (3)0.015 (3)
C130.091 (5)0.074 (4)0.093 (5)0.000 (3)0.007 (4)0.022 (3)
C140.113 (6)0.067 (4)0.095 (5)0.019 (4)0.011 (4)0.018 (3)
C150.080 (4)0.067 (3)0.069 (4)0.006 (3)0.011 (3)0.008 (3)
Geometric parameters (Å, º) top
N1—C21.346 (5)C2—C31.401 (6)
N1—C81.406 (5)C3—C41.386 (6)
N1—H10.8600C4—C51.392 (7)
N2—C71.335 (6)C4—H4A0.9300
N2—C121.414 (6)C5—C61.331 (6)
N2—H20.8600C5—H50.9300
N3—C21.356 (5)C6—H60.9300
N3—C61.363 (6)C7—C81.410 (6)
N3—H30.8600C8—C91.393 (6)
N4—C71.341 (5)C9—C101.401 (7)
N4—C111.358 (6)C9—C151.462 (7)
N4—H40.8600C10—C111.357 (7)
N5—O51.192 (6)C10—H100.9300
N5—O31.210 (5)C11—H110.9300
N5—O41.227 (6)C12—C131.440 (8)
N6—O81.174 (7)C12—C141.452 (8)
N6—O61.193 (6)C12—H120.9800
N6—O71.310 (7)C13—C141.460 (9)
O1—C11.207 (5)C13—H13A0.9700
O2—C11.285 (5)C13—H13B0.9700
O2—H2A0.8200C14—H14A0.9700
O9—H9C0.8500C14—H14B0.9700
O9—H9D0.8501C15—H15A0.9600
O10—H10C0.8499C15—H15B0.9600
O10—H10D0.8501C15—H15C0.9600
C1—C31.488 (6)
C2—N1—C8124.4 (4)N2—C7—N4118.7 (4)
C2—N1—H1117.8N2—C7—C8122.5 (4)
C8—N1—H1117.8N4—C7—C8118.8 (4)
C7—N2—C12124.4 (4)C9—C8—N1120.8 (4)
C7—N2—H2117.8C9—C8—C7120.7 (4)
C12—N2—H2117.8N1—C8—C7118.4 (4)
C2—N3—C6121.5 (4)C8—C9—C10117.2 (4)
C2—N3—H3119.3C8—C9—C15123.2 (4)
C6—N3—H3119.3C10—C9—C15119.6 (5)
C7—N4—C11121.8 (4)C11—C10—C9120.9 (5)
C7—N4—H4119.1C11—C10—H10119.5
C11—N4—H4119.1C9—C10—H10119.5
O5—N5—O3118.6 (5)C10—C11—N4120.6 (4)
O5—N5—O4121.1 (5)C10—C11—H11119.7
O3—N5—O4120.3 (5)N4—C11—H11119.7
O8—N6—O6134.8 (7)N2—C12—C13120.6 (5)
O8—N6—O7111.5 (6)N2—C12—C14118.3 (5)
O6—N6—O7113.5 (6)C13—C12—C1460.6 (4)
C1—O2—H2A109.5N2—C12—H12115.4
H9C—O9—H9D108.2C13—C12—H12115.4
H10C—O10—H10D108.6C14—C12—H12115.4
O1—C1—O2124.3 (4)C12—C13—C1460.1 (4)
O1—C1—C3122.4 (4)C12—C13—H13A117.8
O2—C1—C3113.4 (4)C14—C13—H13A117.8
N1—C2—N3117.6 (4)C12—C13—H13B117.8
N1—C2—C3124.1 (4)C14—C13—H13B117.8
N3—C2—C3118.3 (4)H13A—C13—H13B114.9
C4—C3—C2118.9 (4)C12—C14—C1359.3 (4)
C4—C3—C1119.7 (4)C12—C14—H14A117.8
C2—C3—C1121.3 (4)C13—C14—H14A117.8
C3—C4—C5121.0 (4)C12—C14—H14B117.8
C3—C4—H4A119.5C13—C14—H14B117.8
C5—C4—H4A119.5H14A—C14—H14B115.0
C6—C5—C4118.1 (4)C9—C15—H15A109.5
C6—C5—H5121.0C9—C15—H15B109.5
C4—C5—H5121.0H15A—C15—H15B109.5
C5—C6—N3122.3 (4)C9—C15—H15C109.5
C5—C6—H6118.9H15A—C15—H15C109.5
N3—C6—H6118.9H15B—C15—H15C109.5
C8—N1—C2—N33.2 (6)C11—N4—C7—C80.1 (7)
C8—N1—C2—C3178.0 (4)C2—N1—C8—C990.6 (5)
C6—N3—C2—N1178.0 (4)C2—N1—C8—C793.0 (5)
C6—N3—C2—C30.9 (6)N2—C7—C8—C9179.7 (4)
N1—C2—C3—C4177.7 (4)N4—C7—C8—C90.6 (7)
N3—C2—C3—C41.1 (6)N2—C7—C8—N13.3 (6)
N1—C2—C3—C13.7 (6)N4—C7—C8—N1177.0 (4)
N3—C2—C3—C1177.5 (4)N1—C8—C9—C10177.4 (4)
O1—C1—C3—C4178.8 (4)C7—C8—C9—C101.1 (7)
O2—C1—C3—C41.0 (6)N1—C8—C9—C153.1 (7)
O1—C1—C3—C20.2 (7)C7—C8—C9—C15179.4 (5)
O2—C1—C3—C2179.5 (4)C8—C9—C10—C111.1 (7)
C2—C3—C4—C50.5 (7)C15—C9—C10—C11179.5 (5)
C1—C3—C4—C5178.0 (4)C9—C10—C11—N40.5 (8)
C3—C4—C5—C60.3 (7)C7—N4—C11—C100.0 (8)
C4—C5—C6—N30.6 (7)C7—N2—C12—C1371.3 (7)
C2—N3—C6—C50.0 (7)C7—N2—C12—C14142.1 (6)
C12—N2—C7—N43.0 (7)N2—C12—C13—C14107.4 (6)
C12—N2—C7—C8176.6 (5)N2—C12—C14—C13111.1 (6)
C11—N4—C7—N2179.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10D···O8i0.852.102.942 (8)171
O10—H10C···O4ii0.852.193.037 (7)172
O9—H9D···O5iii0.852.553.089 (7)123
O9—H9D···O4iii0.852.072.916 (6)174
O9—H9C···O1iv0.851.962.809 (5)173
O2—H2A···O9v0.821.732.535 (5)168
N4—H4···O7vi0.861.942.787 (6)166
N3—H3···O60.862.012.746 (6)143
N2—H2···O30.861.982.810 (5)163
N1—H1···O100.862.222.900 (6)136
N1—H1···O10.862.052.697 (4)131
C4—H4A···O5vii0.932.343.162 (7)147
C6—H6···O3iv0.932.263.161 (6)162
C11—H11···O8vi0.932.573.252 (8)131
C15—H15A···O3ii0.962.583.533 (7)174
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z; (iii) x+3/2, y1/2, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x1/2, y, z+3/2; (vii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H18N4O22+·2NO3·2H2O
Mr446.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.4463 (6), 15.0032 (14), 35.975 (2)
V3)4019.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.44 × 0.36 × 0.34
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.947, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
18931, 3540, 1964
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.295, 1.04
No. of reflections3540
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.56

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10D···O8i0.852.102.942 (8)171.4
O10—H10C···O4ii0.852.193.037 (7)171.7
O9—H9D···O5iii0.852.553.089 (7)122.7
O9—H9D···O4iii0.852.072.916 (6)173.5
O9—H9C···O1iv0.851.962.809 (5)172.9
O2—H2A···O9v0.821.732.535 (5)168.0
N4—H4···O7vi0.861.942.787 (6)166.2
N3—H3···O60.862.012.746 (6)143.4
N2—H2···O30.861.982.810 (5)162.5
N1—H1···O100.862.222.900 (6)136.4
N1—H1···O10.862.052.697 (4)131.1
C4—H4A···O5vii0.932.343.162 (7)147
C6—H6···O3iv0.932.263.161 (6)162
C11—H11···O8vi0.932.573.252 (8)131
C15—H15A···O3ii0.962.583.533 (7)174
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z; (iii) x+3/2, y1/2, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x1/2, y, z+3/2; (vii) x+1/2, y+3/2, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the Education Office Foundation of ZheJiang Province (project No. Y201017321) and the Innovation Project of ZheJiang A & F University.

References

First citationBiswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238–2246.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJin, S. W., Zhang, W. B., Liu, L., Gao, H. F., Wang, D. Q., Chen, R. P. & Xu, X. L. (2010). J. Mol. Struct. 975, 128–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationLam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Zhong, F., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 173–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds